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Speed of infinitesimal disturbances in
still gas

[ F A S LTS ELLS TS S SN

a—dv a
prdp |
P, P ptdp P, D
FFFTFFFFFFIFITFFTFT

Continuity:
Ala—dv)p+dp)=apA 4

adp=pdv

Momentl.Jm Zszf’\ s =‘LP
theorem: a dp
Apala—(a—dv))=Adp
4, dv In steal ~5000 m/s
dp=padv In water ~1500 m/s
Allievi theorem——~ In air ~340 m/s
Ideal gases
Equation of state: %=RT

We also assume that the specific heats are constant.

Internal energy:  u=c,T Enthalpy: h=u+%=cpT

. R, . 8314 J
Specific gas constant: R=c, —c, T R = = 287[

c
Ratio of specific heats: 7=Cl eg. for all diatomic gases:
.

y=14

kgK |




The speed of sound in ideal
gases

We assume isentropic compression, which is very fast
and the effect of the friction is negligible, thus:

2 - const.
14

In p—ylIn p=In(const.)

_dp_
14 14
7~
dl:yE:yRT Eg. for air:
ap " p .
at0°C: a=331 m/s
a=yRT at 20°C: a=343 m/s
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Nonlinear wave propagation

What if we generate another small disturbance?

v, >a because:

- The second wave propagates in a gas flow of dv velocity.
- The second wave propagates in a gas flow having a higher
speed of sound: pt — T1 — af.

The second wave will catch up to the first wave.

Shock waves
A compression wave is . Treated as a diSCOntinUity .
steepening, and finally it f"”geTJ“arﬂg)ac)‘f the state variables

becomes a shock wave:
* Propagates faster than the small

disturbances. (Only shock waves
_X‘ can do so.)

+ Deceleration of supersonic flows
are generally caused by shock

Expansion waves waves.
behave in the opposite
way: + Itis a dissipative process.

(Causes head losses.)

+




Analogy

Waves breaking in shallow water
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Analogy

Hydraulic jump in a sink

Resonance in a closed pipe

l(? .—_.—/agq)

Pipe length:
_ 6.05m At 29 Hz we measured:
Diameter:
36 mm 25000
Piston displacement: 20000
50 cm?.
L, 1500
n“_, 10000
E 5000
0
1 2 3 4 5 6
-5000
-10000
-15000
Crank angle ¢ [rad]




Propagation of small disturbances in
subsonic and in supersonic flow

Positions of an object having velocity v at time instants 0,-1,-2 and -3
seconds and also showing the wave fronts started in those instants:

v=0 I: v<a : subsonic

v=a v>a

supersonic |
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Application

Schlieren image of a gun fire

[http://www.phschool.com/science/science_news/articles/revealing_covert_actions.html]

Mach cone

Mach number: =

a
Mach angle:  u= arcsin(gJ = arcsin(ij
v M




Problem #6.1

The Cerenkov radiation
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Variable cross-section channel (1)

A v dp_

Continuity: o~
A v p
---gas flow msp-. -
) dp X
Euler equation: vdv=—— /\
A, v, pandp
dj depend only on x
Definition of a: a* =d—” pend only
0
2 __dpdp > 2dp
v p dp P
1
& o B Dy
v oA Y v A




Variable cross-section channel (2)

dv_dA
bt )55 =

Acceleration | Deceleration

Subsonic  M<1 Convergent | Divergent

Supersonic M>1 Divergent Convergent

If M=1 then dA=0: the area has an extreme value (minimum).

gas flow = M<1 _ M=1 M>1

/\
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Laval nozzle
—~~—

pex

p;/—\

Pt subsonic flow

trans-sonic flow
with a normal shock

; supersonic flow

[An Album of Fluid
Motion, 168]




Energy equation (1)

2 2
ij(u+v—)pdv+§(u+v—)p\7dg:Q+Wf§p§dA
azv 2 . 2 “

2

For steady state:
2
o+t )pvdi=0+w
2
A
Denoting the mass weighted

average of the stagnation
(total) enthalpy in cross-

sections 1 and2 by i, and ,,,

it reads:
(ht,z _ht,l )qm =0+W
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Energy equation (2)

thin stream

We obtain:

The stream tube can be
regarded as a moving wall.

We apply the energy
equation for steady flow
under the following
assumptions:

-the stream tube is thermally
isolated (Q=0);

-the shear stress is 0 over
the stream tube (W=0).

Mo =hyy

Isentropic flow (1)

I. law of thermodynamics:

for an ideal gas:

for isentropic flow:

n 4}

Tds:du+pd(p_1)

Tds :cvde%dp:cvdeRTﬂ
p p

c, dr —Rd—p
T p
5: Cp & = }/—1
c, c,

=il
Qz[pzy 4T _ ()22
P




Isentropic flow (2)

dar dp
= = (y-1)-£
7 (v )p
dp _dp  dT
p p T
dr dp dT
= = (y-1) X -=
T (7 ){p T}
dT dp
= =(y-1)%
v (y-1)

7-1

Qz[&j v
I P1
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Isentropic flow (3)

Reference states

Isentropic flow (5)

We can express temperature T as a function of M:

ho=h+—
2




Isentropic flow (6)

Local pressure and density can be expressed in terms of
the Mach number through the isentropic relations:

e v
5P ot
P T 2

1 1
&:[Q]y—l :[IJ—le)y—l
P T 2

The critical ratios (for the state of M=1):
e
i bR SR
T, y+1 p, \y+l o \r+l

For y=1.4: 0.83 0.53 0.63
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Isentropic flow (8)

a
Mass flow-rate: g, = va=p£p, M a—a, A

553)
(r1
qm—M(1+7/ le] e pra; A
1 2+y-1 1y+1
L _dr+l
y-1 2 2@-1) 2y-1

1y+1

Isentropic flow (9)

N

10 1y+1
- -1 271
A M1+ m2
Ag 2
A. 6] o 1y+l
I I =
2PN I 2
0—05 T 15 2 25 3 35 4
1~ M|
0.9 The inverse of the above
o8\ I function also gives the
o8\ T, Mach number for a given
04 A p A/A. .
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Problem #6.3

a) What is the optimum A,,,/A. ratio of
the nozzle of a rocket thruster
designed for near ground flight, if the
I chamber pressure p,=10 bar, , and
A. Ao v=1.3. Please, use the gas tables!

b) Calculate the mass flow-rate for
T,=1300 K a, R=462 J/kg-K and
A,,:=20 cm?!

c) Please, calculate the thrust!

To the solution
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Thrust function

The momentum theorem for a variable cross-section steady
channel flow reads:

Foop = (I’z +pyv3 )Az - (I’l +ppf )Al +po(A - 4)

F=(p+pr?)a

F_ p+pv’ A_£1+}/M2A

E p+pviA p 1+y A

1.4
1.
E |‘Z§\ " \ /
F. 12 \ e known functions
P ‘\ of M. E.g:
1.05 7 7
10515 A L,Al,[ﬂ)y" [1+L71M2)H
M pe pep 2 2

Normal shock waves (1)

A 8888 EE LTSS S S ST

vl iy
4 unknowns. PP Vi pLpL T

We can eliminate szzzzz7avrsr7777777
one by using:

P ’ A steady flow
£2 =RT, LN is observed!
/%3

Continuity: VI PLA=vy pp A

Momentum low: (p1 +p V12)A:(Pz + 02 V%)A

2 2
Energy equation: [C,,Tl +%ij VA= [c,,T2 +%]p2 vy A
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Normal shock waves (2)

Mach number was the key to isentropic flows ...
... we should try to solve this problem for M,(M,).

= P 1/2
oV = — Ly (yRT)? =
(41 RT, \(7RT)) ‘
2 2
v %
P+ vEi=.. — p1[1+’01—'j:... — pl[lﬂ/—‘z]:m
14l aj
p\l+yMy )=
2 2
Vi Rv _
cpT1+7=... — T 1+7712 :.“_>Tl[1+7 1M12j=
2¢pqi 2
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Normal shock waves (3)

(@ (b) (c)
4 1/2 -1
DRI = g 11075 W)
*hy-1*~0.5 - -
a*b*c Mlz BN alyyEN M22 1+ 77y
1+ yM{ 2 1+yMj 2

Mf[l+%4Mf](l+7M%y :Mzz[H%lezj(H 7M12)2

It is a quadratic formula for M3
We can arrange it into the polynomial form:

MAC)+M2()+()=0

Normal shock waves (4)

M,

o - n w > (4
o
Il

This branch belongs to an expansion shock.
Is it valid?
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Normal shock waves (5)

) 1+yM}
Pressureratio:  (b) — &:yig:f(Ml)
P 1+yMj
T 1+L_1M12
Temperature ratio: (¢) — —2=271=8(M1)
T =22
2
-1
I
A i\

Normal shock waves (6)

4

po_popr_\T &:[ﬂ 1 py
P Paop 2 p I )4
P Zi|
I
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4 s I
s T/,

| M,
03 5 2 25 3 Pi/Py

Problem #6.4

There is a strong stationary normal
shock in a divergent channel at the
cross-section characterized by A,

y=14
Pin =100kPa 4

Aw/Ain :2

M, =2
T, =270K

A{)ut / Ain =3

a) Calculate the Mach number at the

outlet (M,,,)!

b) Please, determine the outlet

pressure (p,,,)!

To the solution
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