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The speed of sound in ideal
gases

We assume isentropic compression, which is very fast
and the effect of the friction is negligible, thus:
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Speed of infinitesimal disturbances in
still gas
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Nonlinear wave propagation

What if we generate another small disturbance?
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Momentum - «\ - The second wave propagates in a gas flow of dv velocity.
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theorem: a = P - The second wave propagates in a gas flow having a higher
Apala—(a—dv))=Adp P speed of sound: pt — T1 — at.
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dp=pady In water ~1500 m/s The second wave will catch up to the first wave.
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Ideal gases Shock waves
i . P _ A compression wave is | * Treated as a discontinuity
Equation of state: o RT steepepning and finally it (finite jumg) of the state variables
’ , p, T and a).
We also assume that the specific heats are constant. becomes a shock wave: ./ )
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. - h=usPoc T disturbances. (Only shock waves
Internal energy:  u=c,T Enthalpy: —u+;—cp XL can do so.)
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Ratio of specific heats: }’=C—p eg. for all diatomic gases:
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behave in the opposite
way: + Itis a dissipative process.

(Causes head losses.)




Resonance in a closed pipe

I(% .Z/éq)

Pipe length:
) 6.05m At 29 Hz we measured:
Diameter:
36 mm
Piston displacement: 20000
50 cm®.
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Problem #6.1

To the solution | |

[An album of fluid motion] _ SPherical projectile

Propagation of small disturbances in
subsonic and in supersonic flow

Positions of an object having velocity v at time instants 0,-1,-2 and -3
seconds and also showing the wave fronts started in those instants:

v=0 l: v<a : subsonic

v=a v>a

supersonic |

Variable cross-section channel (1)

Continuity: df:.{_ﬂ_;_dip:() \/—
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---gas flow —b—-;

d]
Euler equation: ~ vdv =—;p — T~

A, v, pandp
q depend onl
Definition of a: az=dl epend only on x
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Mach cone

Mach number: M =

a
Mach angle:  u= arcsin[gJ = arcsin[ij
v M

Variable cross-section channel (2)

dv_dA
b=

Acceleration | Deceleration

Subsonic  M<1 Convergent Divergent

Supersonic M>1 Divergent Convergent

If M=1 then dA=0: the area has an extreme value (minimum).

gas flow == <l L M=1 M>1
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Energy equation (1)

Isentropic flow (2)
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Energy equation (2) Isentropic flow (3)
thin s\tream 2 The stream tube can be Reference states
tube e —’;:::I/_. regarded as a moving wall.
A i
1 We apply the energy
i equation for steady flow
_____ ‘S under the following
-7[ ---- assumptions:
1 -the stream tube is thermally

isolated (Q=0);
-the shear stress is 0 over
the stream tube (W=0).

We obtain: hyn=h

Isentropic flow (1)

I. law of thermodynamics:  T'ds =du+ pd(p™)

for an ideal gas: Tds :cvde%dp:cvdeRTﬂ
P P

for isentropic flow: c, ar =R dp
T 14
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c, c,
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Isentropic flow (4)

By applying the energy equation to a stream line we obtain:

2
h=h +? = constant

(It is in analogy with the Bernoulli principle.)

Relations between the reference quantities:
M=0 M =1 M=o

} } }
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B o= hots = lmar
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Vi = dx




Isentropic flow (5)
We can express temperature T as a function of M:
hy =h+§
T, :c,,T+V—2

a*=yRT = ycp(l—l]T =(y-1),T
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Isentropic flow (8)

Mass flow-rate: ¢, = PvA=p£P, M aia, A

Isentropic flow (6)

Local pressure and density can be expressed in terms of
the Mach number through the isentropic relations:
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The critical ratios (for the state of M=1):
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For y=1.4: 0.83 0.53 0.63

Isentropic flow (9)
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The inverse of the above
\ function also gives the
\ Mach number for a given
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Problem #6.2

Please, calculate the maximum velocity for isentropic flow
if y=1.4, R=287 J/kg-K and T,=1000 K are given!

To the solution |

Problem #6.3

a) What is the optimum A, /A. ratio of
the nozzle of a rocket thruster
designed for near ground flight, if the
chamber pressure p,=10 bar, , and
v=1.3. Please, use the gas tables!

b) Calculate the mass flow-rate for
T,=1300 K a, R=462 J/kg-K and
A,,=20 cm?!

c) Please, calculate the thrust!

To the solution |




Thrust function

The momentum theorem for a variable cross-section steady
channel flow reads:

F :F2*F1:(pz+p2V22)A2*(p1+p1V12)A1+I’0(A1*A2)
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Normal shock waves (3)
(a) (b) (c)
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Normal shock waves (1)
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4 unknowns. P2 P2 T e PLT

We can eliminate rrrrzrzrzrrrrrzzrzasrr

one by using:
Y 9 A steady flow

L2 _pr, 2, isobserved!
P2
Continuity: VP A=V, pr A

Momentum low: (p1 + 0 Vlz)A = (Pz +p V%)A
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Energy equation: [CI,TI +V7ljp1 WA= [c,,Tz +%]p2 A

Normal shock waves (4)
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This branch belongs to an expansion shock.
Is it valid?

Normal shock waves (2)

Mach number was the key to isentropic flows ...
... we should try to solve this problem for M,(M,).
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Normal shock waves (5)

) 1+y M}
Pressure ratio:  (b) — &:y—g: (M)
o l+yM;
T 1+L_1M12
Temperature ratio: (¢) — —2=2f1=g(1"11)
h 1+%M§

—1
T,
&:&[Jj =n(M,)
Aop\T




Normal shock waves (6)
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Problem #6.4

There is a strong stationary normal
shock in a divergent channel at the
cross-section characterized by A,.

y=14 M, =2

Pin =100kPa 4 T;,,=270K

A,/ Ay =2 Agu/ Ay =3

a) Calculate the Mach number at the
outlet (M,,,)!

b) Please, determine the outlet
pressure (p,,,)!
To the solution |

The entropy production

The entropy change can be related to pressure and
temperature ratios:
Tds = a’h—@ = cpa’T—RTd—p
4 14
ds__v dT _dp
R y-1T »p

B8 __ Y lnifln&
R y-1 T P

For shocks:

Generally we can 5281 . =51
state: e r :[Qj%lﬂ — ek =Pu
I P2 %3

An expansion shock wave would lead to a decrease of
entropy, therefore it does not exist.

Oblique shockwaves (1)

oN©
M,>1 e
a
\'
u  flatplate

Flow direction is changed by § angle.

In still medium, shockwaves propagate faster
than the speed of sound, therefore: f>p

M, can be > 1 for an oblique shock.

Rankine-Hugoniot relations
Change of the thermodynamical state
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Weak shocks are almost isentropic.

... but they still propagate much faster than a.

Oblique shockwaves (2)

Vip =v sin 8
v, =V cos B
vay = vy sin(f—5)
vy, = v, cos(B-3)




Oblique shockwaves (3)

Control PiVin = PiVin
volume
X
77 Py =v2,) = P — i
/."I,
o4 —
&7 Py =y )=0  — v =vy

ns b )=m+ 203, 4)

PiVin = P2Van
Same formulae 5 5
are used for DLt PVin = P2+ P2Von
normal shocks! 2 2

v, V.
b+ =g 20
ity =kt

Oblique shockwaves (6)
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85 __ (7H)A;I"’ the & iso-lines:
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Mach-wave
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Oblique shockwaves (4)
We take the normal components of the Mach numbers:
My, =M, sin My, =M, sin(8-9)

The static flow quantities can be calculated by using the gas
tables developed for normal shocks:

2
ME+—
22 B 1n 7*1
n
ﬂMlzn,l
y—1
T.
&:f(Mln) *2=8(M1n) &zh(Mln)
141 I 4}

But the angle B is still unknown!

Above a minimum Mach number M,;, two B angles exist for
a given 4. (Bsyong > Puear) Onl]y the weak wave can be
observed in extérnal flows. (The strong wave can only be
produced in wind tunnels.)

Mpin depends on 8. Bellow M,,;,, no oblique shock is
possible. A detached bow wave is formed.

We can also define a maximum angle §,,.,, above which no
oblique shockwave can exist for a given fach number.

Oblique shockwaves (5)

Vi v
igf="" 1g(B-8)=—n
Vit Var

Vir =V

density ratio for a
normal shock:
8 _vuvh _py _ r+)Misin® B
€(B-6) vy o (r-1) M]2 sin? B+2
—

2
Mln

Now, we can plot B against M, for given values of &.

Oblique shockwaves (8)

M=constant

\

,streamlined body” ,pluff body”

Eg. if we increase the thickness of the wing the bow shock
can be detached, the flow goes through a normal shock,
therefore a we can expect a much higher pressure close to
the leading edge.




Problem #6.5

a) Airflow b)

M e FFFFF,
: M; M,
— | =
ST F IS
M, =3
My=? P _,
Pn
M, =

To the solution |

Prandtl-Meyer expansion (3)

(v+dv)cosdd—v

8 h= (v+av)sindd

If do— 0, then cos do— 1, and sin d6— do.

pis the Mach angle:

2 L & gD
v

Prandtl-Meyer expansion (1)

Compression + deceleration Expansion + acceleration

—_— e
_— ) —_

— ., _./\

Change of flow direction in supersonic flow (at least in
isentropic cases) is directly linked to acceleration and
deceleration.

We assume an isentropic process; thus we limit the
analyses to expansion and to elementary compression
cases.

Prandtl-Meyer expansion (4)

We can express dv/v in terms of the Mach number:
dv_am  1dT

v M 2T

£=1+L_1M2 in which T; = constant
T
T
-—LdT =(y-1)M am
T

ar __(y-im? am

T M
7=l 710
ay TFTMT M gy I am

v 1+7;IM2 M 7=y M

Prandtl-Meyer expansion (2)

(v+dv) cos dS-v

v v (v+dv) sin d6
%ﬁ
V+d)y
B { /dé‘
AL TT7TI 77777 ’/
g f= Ut dv)cosdd—y

(v+dv)sindS

Prandtl-Meyer expansion (5)

dv > dv 1 dM
ds=2Imr -1 T o
v vy M
2
VM2-1 am MoAMi-1 am
dé T . — S = '[471 am
1+L2 m: M 1 1+—}/2 m: M

This integral is the Prandtl-Meyer expansion function:

6 = P[] a7
y—1 y+1




Problem #6.6

There is a high speed air flow
through a convergent nozzle.
Downstream from the nozzle,
at a given point, the flow
direction is 45° with respect to
the axis.

What is the Mach number at
this point?

To the solution |

Hodograph (3)

d and M, are given.
- What is the resulting M,?
- What is the wave direction?

The physical plane: /\A‘/[*z

The hodograph plane:

0.4f----- .
0.2

0
0.2
0.4

Q
Alg}é&:\\i}/'
= s
7’
3

Hodograph (1)
Inconveniences:
1) the length of the M vector — oo with increasing dangle
2) the length is not proportional to the velocity.
Therefore we will use M*=v/a* instead of M=v/a :

2 2 2

Problem #6.7

Please, solve graphically the double reflection problem
below. M,=1.28, 5=5°.

LTI PP rrrrrrrrsr
M= Y @ :MQL:MZEL{‘ M 1, =
a*z a2 a*z T).‘ Tt T).‘ _1’ ﬁ,’ 2 \\ 3//
M’“Z:MZ[HEMZTLH 0
2 2
" Determine M,, M; and the wave directions!
M V201 7S R VE S 2
3 e
24(y-1)M y+1=(y-1)m To the solution |
Hodograph (2) Redirection of a channel flow
oM™
P LN YER e ———— %o
v y+1-(y-1)M

The integral of ddleads to the formula of an epicycloid.

. mp’esSion
\ ;‘ c !
N2
e Fluctuating pressure with

4 increased dissipation.
e’(pans’-c'n 4 s p

r
v Q{t
’

v

No reflected wave.

'777777777777_ "8 (Only one expansion wave.)




Waves past curved surfaces (1)

Expansion

Compression

\

L

The flow is isentropic only in
the near wall region.

Laval nozzle
\/—

)

P

p

Pt . subsonic flow
/— trans-sonic flow

with a normal shock

; supersonic flow

Shock tubes
Waves past curved surfaces (2) An easy way to .
produce strong shocks The Riemann problem
or hypersonic flow.
v [4 | 1]
*anj% t |
o [4 Mir 8§ 2 [1 |
A 7 expansion contact shock-
100 pd wave  discontinuity ~ wave
M=1.96 = p
/ \ P2=P3
|
7 T X
7 T
2 4 6 8 10
EZT v X
The expansion wave ( V=V
B always has a somewhat 278
[An Album of Fluid Motion, 227] higher pressure ratio. X

Supersonic jets

Under—expanderq:' ]

[An Album of Fluid
Motion, 168]
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