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The mechanical energy balance
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From this, we can express the
delivery height of the pump:
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Average velocity in a cross-section:  V; =

Incompressible flow in closed
conduits
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The Bernoulli’s principle:
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Problem #8.1

a) Explain how the characteristic
curves could be combined!

b) What is the head loss of conduit
#5?

c) What total heads are produced
by pump A and pump B?
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Passive elements vs. pumps
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H can be regarded as the work done on unit weight

of fluid. H = f{q,).

Looped networks
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Favorable in the cases of
large supply networks (eg.
in communal water supply
systems).

Water flow never stops in
the conduits.

Large local consumptions
are tolerated. (Usually less
pressure drop is caused.)
When one conduit must be
closed (eg. for
maintenance) the rest of
the supply network stays
operational.




2010.05.04.

Kirchoff laws Node matrix

NG q> . |.) The mass balance must be The unknoTan are the xj vol_umeﬂow rates in eac_h pl.pe.A
y s +: flow direction meets the edge direction;
y fulfilled in every nods. - flow direction is in adverse direction.
/ a3 Nodal equations: £ i
: q; = Z“i/x/ (i:1..N)
Jj=1

a;are the elements of the topology matrix.
a;= 1: if edge j leads out of node i;

4
iy 4p; II.) The sum of pressure drops
a;; =-1:if edge j leads into node i;

must be zero for each loop.

if edge j does not meet node i.

4p, s

Network elements Number of equations

We have only N-1 independent nodal equation, because the sum of g; values
must be 0. Eg:

1.N @ x _
edges: 1.E O_,,//O 0 =4
1.L

How many nodes we have got?

N=1+E-L
q; represent a supply, when g;>0, and consumption, when g;<0. We have E unknowns, thus: E=N-1+L
q;-s are localized at the nodes. —
q; values must fulfill: N Number of independent

nodal equations
z q; =0
i=1 With the loop equations we can close the system.

Tree topology Loop equations

Tree topology can always be converted into looped topology: , P Xj‘ xj‘ [j
The nodes representing the external space are of identical pressure and must The total pressure loss of edge j reads: Ap iS5 |5 /11 + é,j
fulfill the continuity too, thus can be regarded as one single node. 2 Aj dj
E.g. the topology of an air extraction network: A =k
Pj=Kj xf"‘/‘
E
The system of loop equations is: Zbijp'j =0 (k:1..L)
Jj=1

by are the elements of the loop matrix:

by; are the elements of the loop matrix.
bAj = 1: if the direction of edge j meets the direction of loop k;
bAj =-1:if edge j is in adverse direction;

The looped topology is more general than the tree topology. b"J; 0: ifedge jis not contained by loop k.
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Problem #8.2

a) Specify the loop matrix for the pipe network bellow:

b) Construct the loop equation for loop 1using constant indices
(1,4,5) for the unknown volume flow-rates.

To the solution

The loop correction (2)
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g is a constant value within loop k, therefore:
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loopk
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The Cross method

An easy to implement iterative solution method for looped networks.

We set the volume flow rates on the way to fulfill the nodal equations.
Eg. we set x;=0.

In one loop we correct the flow rates of all edges within the loop by
adjusting their x; values with a g, loop correction flow rate.

This method dods not violate the validity of the nodal equations.

We a;ljply loop corrections on every loops, than we repeat the corrections
in cycles.

We always spoil the neighboring nodes at some extent, therefore many
cycles may be necessary.

Wave propagation in long liquid
product pipelines (1)

Due to the pressure jump dp, EL LTI F FFTTS

the pipe expands by dA.
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Continuity:
(a—av)p+dp)A+dA)=apA apdA+adpA—dvpA=0

Momentum theorem:
Apala—(a=dv))=(A+dA)(p+dp)=Ap= pyay dA

N

Term R is the pressure force acting on the pipe wall. R

Pwail = P thus the Allievi theorem holds: padv=dp

The loop correction (1)

E
The loop equations: Zbijpj =0
Jj=1
The corrected flow-rates must fulfill the loop equation:
E
Dbk +bgap v +bya| =0
j=1
When calculating g, we can make some approximations:
1. We assume that the sign of X; is not changed when being corrected:
E
Zbkjkj s8(x; )(xj +bquk)2 =0
Jj=1
2. When g, is small, its square can be neglected:

E
Zbkjkj sg(x; )(sz +2ijquk)= 0
j=1

Wave propagation in long liquid
product pipelines (2)
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Wave propagation in long liquid
product pipelines (3)

(Hookslaw) o =E, & oc=E;
dpD _ . dD_E, dA —dp=—E,%P
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inwhich E, is the reduced
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Pipe friction coefficient for unsteady
flows

For periodical flows of sinusoidal time dependence A can be specified as a
function of Re and St =D/ v.
When the pressure gradient changes direction:

=
>
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Unsteady A values are usually greater than the steady values due to the

continuous refreshment of the boundary layer.
For laminar flow even an analytical solution can be found in the literature.

For turbulent flows A can be identified on the basis of resonance experiments
carried out in closed pipes. According to our own measurements, A fell in the
range of 0.02-0.04 (for some experiments in the ranges of Re:10*-10° and
$t:0.005-0.02).

Problem #8.3

Compare the wave celerity in still water with those in a pipeline of
given geometrical parameters:

Pipe diameter: 500 mm,
Wall thickness: 10 mm,
Eyaer: 2.0 x 10° Pa,
Egear: 2.1 x 10" Pa.

To the solution

PDE for p(t,x) and v(t,x)
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Unsteady flow in liquid product
pipelines
Continuity equation for constant nominal cross-section pipes:

dp 09
L 4+2 (pv)=0
a oY

IR
of  ox pox

The equation of motion:

f denotes the force on unit mass of fluid due to wall friction:

_14p
f—p o

for turbulent flow, we can state:
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Acoustical assumptions

B, 0
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1) we assume: p=py and a=ag
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2) weassume:  v<<dq

Since  Ppayv must be of the same order of magnitude as p .
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Characteristic variables

ap 9pyagv ©)

Py gy 2P0%Y

a0 o

dpyagy 9 A

%‘*’aoa*i:/’oaof:—ipoao"“" M)
4

9 9
(C+M) —(p+ poagv)+ay—(p+ poagv) =—¢ VM
ot ox

%"J,aoaafz:_gw inwhich @@= p+podgy
d )
(Cc-m) a*(P‘Po”OV)—ao*(P—PO%V)=é'VM
¢ ox
aﬁ_aoaﬁ=gv\v\ inwhich = p— poagy
ot ox

Boundary conditions
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By neglecting the head losses
v, we have got the following relations:
_// VA +v2 4y +v3A43 =0
V|3 ¢ A
— P1=p2
P2=p3

We have got 3 incoming characteristic variables from the 3 pipes.
By using the above 3 algebraic relations we can determine
the 3 unknown (outgoing) characteristics.

Method of characteristics

Let’s calculate pz and vs,
from given py,vy and p,,v,!

o = p1+ Podovi

Br = p2— poaon,

ay=a - vv|ar

By =B+ volvy| 4t

a3+
173:732 2
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Here, we need boundary
conditions.

Problem #8.4

We suddenly open one end of an evacuated pipe.

What will be the pressure and inflow velocity immediately after the opening?
Please, use the method of characteristics and calculate o, § quantities!
Define the initial state of the pipe on the basis of v=0, p=const. conditions.

Pressure in the closed pipe: 50 kPa,
External pressure: 100 kPa,
Air density: 1.2 kg/m?,
Sound speed: 334 m/s.

To the solution




Application examples
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Boundary conditions: the reactor

Reactor

Pipe ¢ % o Intensive dissipation due to the
polymerization process.
Treated as a non-reflective BC:

a constant Svalue is assumed.

Ethylene polymerization

Operating pressure ~ 2700 bar.
Pipe stresses caused by the pressure fluctuations and
by the mechanical vibrations need to be analyzed.
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Hypercompressor

Simulation results vs.
on site measurements
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Boundary conditions: the compressor

Compressor discharge (Velocity at the pipe inlet)
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v=
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Vibration pulse ~ Time [s]

Phase angles of the linear (A¢;) and the sinusoidal (A¢,) parts are set on the basis of
geometrical assumptions.
The phase angle was obtained from the vibration signal caused by the valve opening.




