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Incompressible flow in closed 
conduits
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The Bernoulli’s principle:
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The total pressure loss:
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local losses losses due to straight 

pipe sections

Average velocity in a cross-section:
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area of the pipe
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Passive elements vs. pumps
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We can calculate in 

meter dimensions:
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Head losses of passive elements can be restored by 

using pumps: 

H can be regarded as the work done on unit weight 

of fluid. H = f(qv).
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The mechanical energy balance
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From this, we can express the 

delivery height of the pump:

Given as: 

H = f(qv).

Given, 

constant.
Can be 

expressed
in terms of: 
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Graphical solution for the

operating volume flow/rate:

Problem #8.1
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a) Explain how the characteristic 

curves could be combined!
b) What is the head loss of conduit

#5?

c) What total heads are produced

by pump A and pump B?

To the solution

Looped networks

• Favorable in the cases of 
large supply networks (eg. 
in communal water supply 
systems). 

• Water flow never stops in 
the conduits. 

• Large local consumptions 
are tolerated. (Usually less 
pressure drop is caused.)

• When one conduit must be 
closed (eg. for 
maintenance) the rest of 
the supply network stays 
operational.
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Kirchoff laws

I.) The mass balance must be
fulfilled in every nods.

1p∆
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II.) The sum of pressure drops 
must be zero for each loop.

Network elements

nodes: 1..N

edges: 1..E
loops: 1..L

qi represent a supply, when qi>0, and consumption, when qi<0.

qi-s are localized at the nodes.
qi values must fulfill:
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Tree topology
Tree topology can always be converted into looped topology:

The nodes representing the external space are of identical pressure and must 
fulfill the continuity too, thus can be regarded as one single node.

The looped topology is more general than the tree topology.

E.g. the topology of an air extraction network:

Node matrix
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The unknowns are the xj volume flow rates in each pipe.

+: flow direction meets the edge direction;

- : flow direction is in adverse direction.

Nodal equations:

aij are the elements of the topology matrix.

aij = 1: if edge j leads out of node i;

aij = -1: if edge j leads into node i;

aij= 0:   if edge j does not meet node i.

(i: 1..N)

Number of equations

We have only N-1 independent nodal equation, because the sum of qi values 

must be 0. Eg:

11 qx =1q
2q1x

LEN −+=1

We have E unknowns, thus: LNE +−= 1

Number of independent 

nodal equations Number of loop

equations.

With the loop equations we can close the system.

How many nodes we have got?

Loop equations

The total pressure loss of edge j reads:
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The system of loop equations is: 0
1
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bkj are the elements of the loop matrix:

bkj are the elements of the loop matrix.

bkj = 1: if the direction of edge j meets the direction of loop k;

bkj = -1: if edge j is in adverse direction;

bkj= 0:   if edge j is not contained by loop k.

(k: 1..L)
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Problem #8.2
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a) Specify the loop matrix for the pipe network bellow: 

b) Construct the loop equation for loop 1using constant indices

(1,4,5) for the unknown volume flow-rates.

To the solution

The Cross method

1. We set the volume flow rates on the way to fulfill the nodal equations. 

Eg. we set xi=0.

2. In one loop we correct the flow rates of all edges within the loop by 

adjusting their xj values with a qk loop correction flow rate.
This method does not violate the validity of the nodal equations.

3. We apply loop corrections on every loops, than we repeat the corrections 
in cycles.
We always spoil the neighboring nodes at some extent, therefore many 
cycles may be necessary.

An easy to implement iterative solution method for looped networks.

The loop correction (1)
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The corrected flow-rates must fulfill the loop equation:
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2. When qk is small, its square can be neglected:

When calculating qk we can make some approximations:

The loop correction (2)

( ) 02
1

2 =+∑
=

E

j

kkjjjjjkj qbxx)x(sgkb

( ) 02
1

2 =+∑
=

E

j

kjjkjjjjkj qxkbxxkb

qk is a constant value within loop k, therefore:

02
1

2

1

=+ ∑∑
==

kloop

j

jjkjk

kloop

j

jjjkj xkbqxxkb

∑

∑

=

=
−=

kloop

j

jjkj

kloop

j

jjjkj

k

xkb

xxkb

q

1

2

1

2 kkj
n
j

n
j qbxx +=+1

Than we correct the

flow-rates:

Wave propagation in long liquid 
product pipelines (1)
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Momentum theorem:

Term R is the pressure force acting on the pipe wall.

dpdva =ρthus the Allievi theorem holds:ppwall ≈

Due to the pressure jump dp,

the pipe expands by dA.

Wave propagation in long liquid 
product pipelines (2)
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Wave propagation in long liquid 
product pipelines (3)
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in which Er is the reduced

modulus:

Problem #8.3

Compare the wave celerity in still water with those in a pipeline of 

given geometrical parameters:

Pipe diameter: 500 mm,

Wall thickness: 10 mm,

Ewater: 2.0 x 109 Pa,

Esteal: 2.1 x 1011 Pa.

To the solution

Unsteady flow in liquid product 
pipelines
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Continuity equation for constant nominal cross-section pipes:

f denotes the force on unit mass of fluid due to wall friction:
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The equation of motion:

Pipe friction coefficient for unsteady 
flows

For periodical flows of sinusoidal time dependence λ can be specified as a 

function of Re and St = f D / v.

Unsteady λ values are usually greater than the steady values due to the 

continuous refreshment of the boundary layer. 
For laminar flow even an analytical solution can be found in the literature.

When the pressure gradient changes direction:

For turbulent flows λ can be identified on the basis of resonance experiments 

carried out in closed pipes. According to our own measurements, λ fell in the 
range of 0.02-0.04 (for some experiments in the ranges of Re:104-105 and 

St:0.005-0.02).

PDE for p(t,x) and v(t,x)
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Now, every 

term is in 
Pa/s.
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1)   we assume: 0ρρ ≅ and 0aa ≅

2)   we assume: 0av <<

va00ρSince must be of the same order of magnitude as p .
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3 Let’s calculate p3 and v3, 

from given p1,v1 and p2,v2!
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Here, we need boundary 

conditions.

Boundary conditions
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By neglecting the head losses

we have got the following relations:

We have got 3 incoming characteristic variables from the 3 pipes.

By using the above 3 algebraic relations we can determine 
the 3 unknown (outgoing) characteristics.

Problem #8.4

We suddenly open one end of an evacuated pipe. 

What will be the pressure and inflow velocity immediately after the opening?
Please, use the method of characteristics and calculate α, β quantities!

Define the initial state of the pipe on the basis of v=0, p=const. conditions.

Pressure in the closed pipe: 50 kPa,

External pressure: 100 kPa,
Air density: 1.2 kg/m3 ,

Sound speed: 334 m/s.

To the solution
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Application examples

Ethylene polymerization

Reactors
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Vibration signal

Pressure signal

Operating pressure ~ 2700 bar.

Pipe stresses caused by the pressure fluctuations and 
by the mechanical vibrations need to be analyzed.

Boundary conditions: the compressor

Phase angles of the linear (∆φ1) and the sinusoidal (∆φ2) parts are set on the basis of 

geometrical assumptions. 
The phase angle was obtained from the vibration signal caused by the valve opening.
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Boundary conditions: the reactor

αααα(t) ββββ(t)=ββββ0

Pipe

Reactor

Intensive dissipation due to the 

polymerization process.
Treated as a non-reflective BC:

a constant β value is assumed.

Simulation results vs. 
on site measurements
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