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2. Irrotational flows

Dr. Gergely Kristóf

Department of Fluid Mechanics, BME

February, 2009.

Most analytic solutions have been developed for irrotational flows. 

Lamb, H: Hydrodynamics, 1932. (First edition: 1879.)

Flows originated from a volume containing fluid at rest is an irrotational flow until 

the vorticity generated by walls penetrates the flow field.

„The irrotational motion of a liquid occupying a simply-connected region
has less kinetic energy than any other motion consistent with the same
normal motion of the boundary.”  (W.Thomson, 1849)

φ∇=v
r
0=×∇ v

r

we can define velocity-potential function φ as:

If the velocity field is rotation free: 

(This holds for compressible flows as well.)

Irrotational flows
Shape of the streamlines?

Pressure and velocity distributions? 

Some application examples

• Flow close to the 
extraction point

• Flow around airfoils

• Darcy flow, wells

• Drinking water 

reservoirs
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Porous media flows
In porous media (such in soil, rock, or in adsorber beds) the flow can be 

described by Darcy’s law, according to which the flow rate in a horizontal 
sample:
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in which, µ [Pa.s]=ρν is the dynamical viscosity of the fluid, k [m2] is the 
permeability of the porous medium. In most cases k is measured in Darcy units:
1 D ≅ 1012 m2. The generalization of Darcy’s law:

thus the velocity potential:
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Calculation of the pressure field

Pressure distribution in ideal fluid (µ=0, ρ=const.) can be obtained from
the Bernoulli principle:
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The equation of motion for Darcy flow:
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In which the density (ρ), the permeability (k) and the dynamic viscosity (µ) are 
constant  values and the velocity is defined as the surface intensity of the 
volume flow rate:

Nearly irrotational flows in reality
Total pressure distributions from 

2D CFD models: 

around an airfoil

in an orifice

around the body of a car

red color: irrotational flow

orange color: irrotational flow
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0=⋅∇ v
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Continuity equation:
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φ is an harmonic function (fulfilling the Laplace equation).

Velocity potential for constant 

density fluid flow

An important example: velocity potential of a point source:
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E.g. double source (doublet).

Const.0 ==→ dsQM,ds

Any irrotational flow can be regarded as a result of a distribution of sources

and doublets over the boundary.

The governing equations are linear, therefore we can utilize the superposition 

principle. 

Superposition principle

The intensity distribution is still a question.

We can utilize the boundary element method …

The continuity equation of a constant density fluid is automatically fulfilled, 

if the velocity field can be derived from an existing Ψ vector potential function: 
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u and v are the x and y components

of the velocity vector:

Ψ is a scalar function in 2 spatial dimensions and called the „stream function” in 

2D flow situations. Only the z component is non-zero:

Ψ makes much more sense in 
2D, because the definition decreases 
the number of unknown scalar fields. 

Stream function

Def:
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Ψ

Ψ+dΨ

Ψ expresses volume flow-rate between A and B (in a 1m wide domain):

There is no flow through the iso-lines of Ψ, therefore these are streamlines.

The total differential of the stream 

function:
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The stream function in 2D

The continuity in 2D: 0
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2D irrotational flow of a constant 

density fluid

Let’s suppose, that:

Ψ is also a harmonic function.

0and0 == φ∆∆ΨBoth Ψ and φ are harmonic functions:
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)z(fw =
z is a complex number

(position vector);   z=x+iy
Thus, any differentiable complex function corresponds to valid 2D, steady, 
irrotational flow of a constant density fluid.

Complex potential (1)

furthermore they fulfill the Cauchy-Riemann conditions:

Therefore they can be regarded as the real and imaginary parts of a differentiable

complex function: w is called complex potential.

We only need to look for solutions fulfilling the boundary conditions. 

We will analyze the complex potential of some primitive flow structures, then we
superimpose and transform these simple solutions for obtaining solutions which fulfill
more complex boundary conditions.
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The complex conjugate of the velocity vector can be obtained by 

taking the derivative of the complex potential:

x

y

c

c

vi

vi−

Velocity is a complex vector as well:

Complex potential (2)

Ψ φ w

Name Stream func. Velocity-pot. Complex-pot.

Variable density flow N.A ** applicable N.A

Rotational flow applicable N.A N.A

3D flow vector scalar N.A

Definition v
rr

=×∇ ψ v
r

=∇φ ψφ iw +=

Potentials

** Another definition of Ψ allows compressibility.

Parallel flow
zcw = is a complex number.
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E.g: the streamline Ψ=0 is a straight line passing through 0,0 :
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Free vortex 1.

zkiw ln= k is a real number.
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Streamlines are concentric circles: Const.ln == rkψ
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Free vortex 2.

Circulation along any curve which passes around the origo one time:
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Unit vector pointing
in azimuthal direction.

r

k
c =The velocity magnitude:

The velocity field

Problem #2.1

What is the shape of the water surface above the drain of the bath
tub? Determine the drop of water level between points characterized by 

r1 and r2 for a given value of Γ!

0≈zv the field variables depend only on r.

To the

solution
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Sources and sinks
Note that, these are line sources in 3D.
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Problem #2.2
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a. Construct the complex potential for this

flow! (Q, h and L are given.)

b. Determine the velocity magnitude in

B! 
c. What is the volume flow-rate between

A and B?

d. Calculate the pressure distribution
along axis x for Darcy flow of a given

permeability and viscosity!

To the

solution

Flow around a corner
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Ψ=0, when

0, π/2

n=2/3 :
Ψ=0, when

0, 3π/2
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Problem #2.3

a. What is the shape of the streamlines close to a stagnation line?
y=f(x) 

To the

solution

b. How does the velocity of a fluid parcel approaching the 
stagnation line changes with distance?

v=g(y)

Dipoles (doublets) (1)
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Problem #2.4

a) Prove that the streamlines are circular, and touching upon the x axis
from the positive y direction, in the origin of the coordinate system!

b) Please, sketch the streamlines!

To the

solution
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Flow around a circular cylinder (1)
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What is the equation of the streamline characterized by Ψ=0?
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Flow around a circular cylinder (2)
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Flow around a circular cylinder (3)
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Problem #2.5

a. Calculate cA for a given c∞!
b. Determine the distribution of the 

pressure coefficient over the 

surface of the cylinder: cp=f(ϑ).

c∞

p∞

A

ϑ

To the

solution

Flow around a cylinder
What is the velocity distribution in the vicinity of the stagnation point?
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Flettner rotor (1)
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Flettner rotor (2)

[http://hu.wikipedia.org/wiki/Magnus-effektus]

Problem #2.6

What circulation intensity is necessary for shifting the stagnation 
point by ϑ0 angle?

To the

solution

Joukowsky transformation (1)

z
ζ

( )zf=ζ

( )ζ1−= fz

We transform the z space, but we keep the value of
the complex potential: )(w)z(w ζ=

By using the complex potential of a Flettner rotor, we can describe
the flow around an airfoil. 
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Joukowsky transformation (2)

A complex transformation is conformal, if it does not change the far 
field characteristics of the function.

These transformations can be written in the form of a series:
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The simplest possible case is the Joukowsky transformation:

z

a
z 10+=ζ in which a10 is a real number.

Singular points (1)
In those points where the derivative of the transformation expression is
zero, the inverse transformation is not single valued.

A simplified illustration for a real-real transformation:
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Singular points (2)
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Joukowsky airfoils are images of circles passing at least through one of the 

singular points.
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Problem #2.7

Please, specify the equation of a circle around the complex point ε,

passing through the real point .a10

To the

solution

Joukowsky profiles (1)
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Without circulation

… no lift force is produced. 

[An album of fluid motion]

Hele-Show flow around an airfoil at 13°angle of attack.

Infinite velocity here

Kutta condition

The rear stagnation point is 
located on the trailing edge.

ε, α → ϑ0 → Γ
ϑ0

c∞

α

ε

Angle of attack:

α

β

Problem #2.8
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Estimate the lift coefficient (cl) of an arched plate! 

α and f/h can be regarded as given values, with both being small.

f

h

c∞

α

To the

solution
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Comparison with measured data
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[Schlichting 1.11]

Lift and drag coefficients for a 

Joukowsky profile

Application examples

Department of Fluid Mechanics, BME

Department of Fluid Mechanics BME

Oil wells (1)

gas

oil

water
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Oil wells (2)
A Hele-Show experiment

[Ongoing research led by Prof. Tamás Lajos]

Onshore water 

wells

The critical flow rate depends on:

1. River level

2. The sustainable permittivity of the infiltration surface

3. Critical velocity around the pipes for avoiding damage in the porous medium.

Guber József Water Reservoir 
Budapest

The plans of a state of the art water reservoir operating in 
Munich was adapted by the Budapest water company in 1970.

2 piano shaped reservoirs 40.000 m3 each.



2015.03.04.

17

Operating modes

Munich
Continuous flow.

The total amount of water 

produced by the supplier
passes through the reservoir.

Budapest
Used for network pressure 

stabilization.

Loaded by night, and unloaded
during the peak consumption 

hours.

t1

t2=t1

!0=×∇ v
r

Proposed the idea of irrotational flow as a 
design target. He also suggested a method for 

finding an analitical solution for the irrotational 

flow field.

Professor József Gruber (1915-1972)

Head of Department at the 
Dept. Of Fluid Mechanics, 

BME between 1950  and 1972

Infinite series of sinks

Department of Fluid Mechanics BME

Laboratory experiments

Experimental setup
Inlet comb with uniform perforation

The Munich case
The Budapest case

Variable inlet comb

Department of Fluid Mechanics BME


