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Boundary layers
red color: irrotational flow

orange color: irrotational flow

In high Re flows, close to solid 

objects

BL can be separated from the 

body. Thus forming a vortex 
layer, which modifies the total 
pressure in large spaces: 

separation bubble.

Boundary layer related phenomena

Separation:

-formation of free shear layer,

-strong modification of the 

surface pressure distribution 

(increased head loss),

-production and also reduction 

of the lift force acting on wings.

Turbulence:

-irregular velocity fluctuations

-increased BL thickness

-increased transport coefficient 

(local heat transfer coef. skin 

friction)

-increased resistance against 

separation

Secondary flow:

-by-passing fluid from high to 

low surface pressure zones,

-creation of vorticity parallel to

the main stream

-increased mixing, drift motion 

of sediments and buoyant 

particles

Displacement: Virtually increases the thickness of a plate or an airfoil.

[Schlichting 20.25][Shapiro] [Shapiro]
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The boundary layer concept

If the fluid viscosity is very small, then surface friction can effect the flow 

only in the immediate vicinity of the wall, in a layer of δ thickness.
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We can estimate δ assuming a balance between viscous and inertial forces at

the edge of the boundary layer (y=δ). If ν0 is a constant value:
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For laminar boundary layer:  

Two alternative definitions of the

Reynolds number:
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Problem #3.1

A) Compare the critical value of Reδ (corresponding to 

laminar-turbulent transition) for a flat plate and in a circular 
pipe by assuming:
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D
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To the solution

B) What is the dimensionless transition length xcrit/D at the 

critical value of ReD ?

Boundary layer equation (1)
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Reference length: Reference velocity:

We estimate the order of magnitude of the dimensionless field variables 

with respect to:

(e.g. the length of the plate)

Problem #3.2

Please, estimate the order of magnitude of each term in the dimensionless 

continuity, and in the dimensionless equation of motion of a steady boundary 
layer flow!

To the solution
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Boundary layer equation (2)

From the y component of the eq. of motion we can conclude:

The external pressure penetrates the boundary layer, therefore 
the pressure depends only on the x coordinate. 
The pressure gradient can be related to the bulk flow velocity:
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Boundary layer

equations (BLE) for 
laminar flow.
Field variables:

u(x,y) and v(x,y)

Self-similarity of the laminar 

boundary layer
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The solutions of this form are independent from Rel : )"y,'x('u

Flat plate of 0 inclination

Solved by Blasius (1908).

[Schlichting, 7.8, 7.9]

Due to the self-similarity, 

these profiles are 
independent from Rex.

731

645

."y:

."y:

* =

=

δ

δ

l0ν
∞=

U
y"y

l0ν
∞=

U
y"y

*
. δδ 263=



2015.03.25.

5

Flow past a cylinder

81°

The position of the separation point must be independent from the 

Reynolds number. (As long as the external flow is independent 
from Re.)
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indep. 
from Rel.

Problem #3.3

Please, calculate the displacement velocity v(x,δ)   
(y velocity profile at the edge of the boundary layer)

over a flat plate of zero inclination for given l, Rel and U∞ .

To the solution

The origin of turbulence

Any velocity profile with a point of inflexion is unstable. 

This can be proved also for inviscid fluids (inviscid instability).

Shear layer is a vortex 

layer which can be 
modelled with discrete 
eddies.

this eddy become an attractor

perturbation amplitude increases

This is called the 

Kelvin-Helmholtz 
instability.
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In atmospheric boundary layers

[Vincent van Gogh]

This can be observed in atmospheric boundary layers, in the vicinity of cold 

fronts. 

How can be a convex velocity profile, such as Blasius profile, is unstable?
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The perturbed flow:

The method of small perturbations (1)

u~uu += v~vv += p~pp +=

( ) ( )xp,v,yu 0≈

The flow quantities are decomposed: 

Small perturbations (2D, time dependent): ( ) ( ) ( )t,y,xp~,t,y,xv~,t,y,xu~

The mean flow is a 2D quasi-steady boundary layer flow:
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The mean flow:

Quadratic terms of the perturbation velocity are neglected. Pressure is devided by ρ.

The method of small perturbations (2)
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andBy introducing the stream function Ψ, for which 

The continuity equation is automatically fulfilled.

Furthermore, we can eliminate the pressure by taking the curl of the 

equation of motion. The result would be a forth order PDE for Ψ …
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Tollmien-Schlichting waves
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Note that, f(y) is complex, but  physical meaning is only given for the real part.

Problem #3.4

Please, calculate the vorticity of the perturbation 
velocity field for Tollmien-Schlichting waves!

To the solution

Stability equation (1)

After substitution and elimination of the pressure, we obtain a 4-th order ordinary 

differential equation for f(y), which is called the Orr-Sommerfeld equation:
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Dimensionless quantities:

wave number amplification factor
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Stability equation (2)
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Stability of BL depends on

Eg. the Blasius profile 

is unstable above a certain

critical Reynolds number.

Point of inflexion
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„Velocity profiles with a point of inflexion are 

unstable.” /Rayleigh – Tollmien theorem/
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Flow pattern

[Schlichting 16.9]

… for a neutral (βi=0) disturbance in a given mean BL profile at given Reδ*.

Amplification of the disturbances

3
10×

∞U

*
i δβ
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(Flat plate with 0 pressure gradient)
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Effect of the pressure gradient
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The pressure gradient is linked with 

the velocity gradient of the external 
flow:

Adverse pressure gradient

Formation of an inflexion point 

on the mean velocity profile

High amplification factor for a 

wide range value of α.
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Problem #3.5
Please, calculate the displacement thickness and the wavelength of highest 

amplification factor for a flat plate of zero inclination at Rex=200000, x=0.1 m.
(This is roughly a speed of 108 km/h in standard atmosphere.)
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To the solution

Transition process

1. Natural transition

The initial disturbances are 
generated by the uneven 
surface. Amplification rate 

depends on dp/dx.
2.   Bypass transition

The transition is boosted by the 

turbulence of the main flow.
3.  Separation induces transition

Laminar separation creates an 
inflexion in the u(y) profile which 

is unstable.
4.  Cross-flow transition

Instability caused by a cross 

flow (w velocity component) e.g. 
past swept wings or rotating 
bodies. [White: Viscous Fluid Flow, 1991]

Instability of the laminar boundary layer:

exponential growth of the amplitude of
Tollmien-Schlichting waves.

Effects helping the transition:

Top view:
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Transition process

Averaging

Turbulent motion is irregular: you will possibly measure N different values at the 

same flow time (time elapsed from the start of the experiment) and spatial 
coordinates if you repeat the experiment N times.

The expected values of the measured quantities are denoted by over-bar and
regarded as mean flow quantities. Eg:
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Mean values in a quasi-steady flow can be approximated by the temporal average 

of a measured signal recorded during a sufficiently long time interval T:
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This way, any transient shorter than T (e.g. high frequency waves) will be filtered out.

Effect of turbulence on mean flow: 

Reynolds averaging

'ppp +=

We decompose the instantaneous flow quantities to mean values and turbulent 

fluctuations (vectors indicated by underscore):

Thus, by definition, the mean values of all fluctuating quantities are zero:

0'and0' == pv

The fluctuations are not small, therefore we cannot neglect second order terms.

By taking the average of the Navier-Stokes equation for the instantaneous flow 
field, for incompressible flow we obtain:

NS equation for the mean flow Reynolds stresses rising

from the convective term
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Reynolds stresses
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The new force term can be expressed as a divergence of the Reynolds-stress 

tensor:

Rvv τ⋅∇=⋅∇− ''ρ

It is a symmetric tensor. I general: 6 stress components need to be modelled.

Prandtl’s mixing length model
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1. ) The fluctuation magnitude caused by a fluid 

parcel which is displaced over a distance l can 

be expressed as:
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in which the mixing length l can be properly 

approximated as a function of mean flow 
characteristics and geometrical parameters.

2. ) All components of the fluctuating velocity are 

approximately the same:

'v'u ≅

turbulent viscosity

(not a constant)

On the basis of the above assumptions we can calculate the components of the 

Reynolds stress tensor. Eg:

y

u

y

u

y

u
'v'u t

∂

∂
=

∂

∂

∂

∂
= νρρρ 0

2

00 l

Structure of the turbulent boundary layer

4. Outer layer deceleration
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( ) Cylnu +∝3. Fully turbulent layer

2. Buffer layer
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Velocity profile
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0<y+<5 (..10) (30..) 60<y+<300 ?

455.C =

For smooth

plate:

(C is roughness 

dependent.)

Velocity profile

[ANSYS-FLUENT manual]

Problem #3.6

Determine the turbulent viscosity ratio (νt / ν0) in the logarithmic layer for 
a given value of y+!

To the solution
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The effect of the surface roughness

[Schlichting 21.10]
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Skin friction coefficient for a flat plate

Problem #3.7
Determine the maximum magnitude of sand roughness for which a flat plate can be 

regarded as hydraulically smooth. The free stream velocity and the kinematical 
viscosity are given: 125

0 sm1051m/s15 −−
∞ ×== .,U ν

To the solution

Numerical integration of the BLE
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Discretization
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Numerical stability can be riached using very small ∆x.

Discretization
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One tridiagonal system need to be solved in every new profile by using

Thomas algorithm.
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Solution of heat and mass transfer 

problems
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Transport coefficients are calculated 

from νt :

pc
a

0ρ

λ
=

Heat diffusivity 

coefficient [m2s-1]:

heat cond. coeff.

specific heat at 

const pressure

When u and v are already 

known we can calculate 
T (temperature) and 
c (concentration) fields.
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Mixing length limitation

y

u
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In the numerical model the turbulent viscosity νt is computed according to the 
mixing length theory:

l értékét a logaritmikus rétegen kívül korlátozni kell!

Escudier korreláció:

yκ

l

δ090.

yδ

( )δκ 09.0,max y=l δ is determined from u(x,y).

Solution procedure

δ → l → νt → u → v

The profiles of u, v, T and c are known in a cross-section of the boundary-layer. 

The calculation of the next profiles involves the following steps:

at → T

Dt → c

From the new u, T and c profiles the wall heat transfer coefficient, mass 

transfer coefficient and shear stress can be evaluated.

Facultative homework

a) Implement a boundary-layer solver, which can incorporate variable external 

flow velocity U(x) and option for using mixing length turbulence model. 
b) Determine u(x,y) and v(x,y) velocity distributions on the frontal surface of a 

cylinder at ReD=10000 by calculating U(x) from the potential flow theory. 

The angular position can vary like: 0 °< α < 100°. Determine the point of 
separation!

c) Compare the u(y) profiles in laminar boundary layers of ReD=10000 and 

ReD=25000 at the angular position α=45°and prove the self-similarity of the 
dimensionless u’(y’’) and v’’(y’’) profiles!

d) Repeat the simulation for turbulent boundary-layer and determine the point 
of separation!

α

y

U∞

Award: 15 exam points.
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Performance of airfoils

Avoiding BL 
separation

Requirements

High lift
at low speed

Low drag
at high speed

For low speed 
takeoff and 

landing ability.

For minimum fuel 
consumption.

Delaying BL 
transition

AvcF LL
2

2
∞=

ρ

Methods for delaying the transition
1. Smoothing the surface

2. Low intensity BL suction.
3. Pushing the maximum thickness as close to the trailing edge as possible. 

Boundary layer suction

Total skin friction coef. of a flat plate

[Schlichting: 17.15]
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NACA laminar profiles

[Schlichting: 17.9]Curves 1,2 and 3: flat plate x 2.
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Methods for avoiding separation

1. Turbulence generation

(passive or active)

2. Intensive BL suction

(active)

3. BL refreshment

(passive or active)


