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Speed of infinitesimal disturbances in
still gas
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Continuity:
Ala—dv)p+dp)=apA 4

adp=pdv

Momentl.Jm Zszf’\ s =‘LP
theorem: a dp
Apala—(a—dv))=Adp
4, dv In steal ~5000 m/s
dp=padv In water ~1500 m/s
Allievi theorem——~ In air ~340 m/s
Ideal gases
Equation of state: %=RT

We also assume that the specific heats are constant.

Internal energy:  u=c,T Enthalpy: h=u+%=cpT

. R, . 8314 J
Specific gas constant: R=c, —c, T R = = 287[

c
Ratio of specific heats: 7=Cl eg. for all diatomic gases:
.

y=14

kgK |




The speed of sound in ideal
gases

We assume isentropic compression, which is very fast
and the effect of the friction is negligible, thus:

2 - const.
14

In p—ylIn p=In(const.)

_dp_
14 14
7~
dl:yE:yRT Eg. for air:
ap " p .
at0°C: a=331 m/s
a=yRT at 20°C: a=343 m/s
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Nonlinear wave propagation

What if we generate another small disturbance?

v, >a because:

- The second wave propagates in a gas flow of dv velocity.
- The second wave propagates in a gas flow having a higher
speed of sound: pt — T1 — af.

The second wave will catch up to the first wave.

Shock waves
A compression wave is . Treated as a diSCOntinUity .
steepening, and finally it f"”geTJ“arﬂg)ac)‘f the state variables

becomes a shock wave:
* Propagates faster than the small

disturbances. (Only shock waves
_X‘ can do so.)

+ Deceleration of supersonic flows
are generally caused by shock

Expansion waves waves.
behave in the opposite
way: + Itis a dissipative process.

(Causes head losses.)

+




Analogy

Waves breaking in shallow water
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Analogy

Hydraulic jump in a sink

Resonance in a closed pipe

l(? .—_.—/agq)

Pipe length:
_ 6.05m At 29 Hz we measured:
Diameter:
36 mm 25000
Piston displacement: 20000
50 cm?.
L, 1500
n“_, 10000
E 5000
0
1 2 3 4 5 6
-5000
-10000
-15000
Crank angle ¢ [rad]




Propagation of small disturbances in
subsonic and in supersonic flow

Positions of an object having velocity v at time instants 0,-1,-2 and -3
seconds and also showing the wave fronts started in those instants:

v=0 I: v<a : subsonic

v=a v>a

supersonic |
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Application

Schlieren image of a gun fire

[http://www.phschool.com/science/science_news/articles/revealing_covert_actions.html]

Mach cone

Mach number: =

a
Mach angle:  u= arcsin(gJ = arcsin(ij
v M
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Problem #6.1

[An album of fluid motion] _SPherical projectile

To the solution |

. Analogy

i oo Coanicy adaion Cerenkov radiation
. by e s okt
LY e

Variable cross-section channel (1)

Continuity: @+ﬂ+d£=0 \/—
A v p
---gas flow msp-. -
) dp X
Euler equation: vdv=—— /\
A, v, pandp
dj depend only on x
Definition of a: a* =d—” pend only
0
V2ﬂ=_dld£a2=_a2dl
v p dp P
1
& o B Dy
v oA Y v A
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Variable cross-section channel (2)

dv_dA
bt )55 =

Acceleration | Deceleration

Subsonic  M<1 Convergent | Divergent

Supersonic M>1 Divergent Convergent

If M=1 then dA=0: the area has an extreme value (minimum).

gas flow = M<1 _ M=1 M>1

/\

Energy equation (1)

2 2
ij(u+v—)pdv+§(u+v—)p\7dﬁ:Q+Wf§p§dA
azv 2 % 2 “

> For steady state:

2
o+t )pvdi=0+w
AR

Denoting the mass weighted
average of the stagnation
(total) enthalpy in cross-
sections 1 and2 by i, and ,,,
it reads:

(ht,z _ht,l )qm =0+W

Energy equation (2)

thin stream 2 The stream tube can be
tube \ .- -_:-_:I/_. regarded as a moving wall.

1
\ We apply the energy
) equation for steady flow
e underthg foII.owmg

/[ assumptions:
1 -the stream tube is thermally
isolated (Q=0);
-the shear stress is 0 over
the stream tube (W=0).

We obtain: hyn=h




Isentropic flow (1)

I. law of thermodynamics:  T'ds=du + pd(p™')

d,
for an ideal gas: Tds:cvdT—%dp:cvdT—RTf
P

for isentropic flow: cvﬂ :Rd—p
T p
5 = Cp =y-1
c, [»
-1
L [&] Ty
L \p; T P
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Isentropic flow (2)

Tl
T p
dp _dp  dT
p p T
AT _ gy _dl
T p T
dar dp
Z —(y-1
r==( )p

Isentropic flow (3)

Reference states




Isentropic flow (4)

h=h +% = constant
(It is in analogy with the Bernoulli principle.)

Relations between the reference quantities:

M=0 M =1 M=o

} } i
2 2
ho= he+l = Ymax
2 2
Ve = Adx

By applying the energy equation to a stream line we obtain:
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Isentropic flow (5)
We can express temperature T as a function of M:
2
h =h+
2
2

v
c,I; :cpT+7

a*=yRT = ycp(l—l]T =(y-1),T
7

af _a v
y-1 y-1 2
at T 7-1
B ERLANLY Ve

¢ T 2

Isentropic flow (6)

Local pressure and density can be expressed in terms of
the Mach number through the isentropic relations:

e v
{5 i
P T 2

1 1
&:[Q]y—l :[IJ—le)y—l
P T 2

The critical ratios (for the state of M=1):

v
. 2 p*_(2J7—1 &:[2
T, y+1 p, \y+1 pr 7+l

For y=1.4: 0.83 0.53 0.63




Problem #6.2

Please, calculate the maximum velocity for isentropic flow
if y=1.4, R=287 J/kg-K and T,=1000 K are given!

To the solution
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Isentropic flow (8)

a
Mass flow-rate: g, = va=p£p, Ma—a, A

1 2+y-1 1y+1
LI 1r+l
y-1 2 2@-1) 2y-1
iy
qm:M[HLlMZJ b a A
2

! iy \A
. =[l+%1 g A — = f(M)

Isentropic flow (9)

N

0 1
A S M‘I(HL_IMZ]”"
A, 6l A 2
.81 = 1y+1
I I =
2PN I 2
0—05 T 15 2 25 3 35 4
1~ M|
0.9 The inverse of the above
o8\ I function also gives the
o8\ T, Mach number for a given
0.4 ) p A/A...
0.3 Q\ -
0.2 pr NOR
0.1 S
005 775 2 25 3 35 4




Problem #6.3

a) What is the optimum A,,,/A. ratio of
the nozzle of a rocket thruster
designed for near ground flight, if the
I chamber pressure p,=10 bar, , and
A. Ao v=1.3. Please, use the gas tables!

b) Calculate the mass flow-rate for
T,=1300 K a, R=462 J/kg-K and
A,,:=20 cm?!

c) Please, calculate the thrust!

To the solution
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Thrust function

The momentum theorem for a variable cross-section steady
channel flow reads:

Foop = (I’z +pyv3 )Az - (I’l +ppf )Al +po(A - 4)

F=(p+pr?)a

F_ p+pv’ A_£1+}/M2A

E p+pviA p 1+y A

1.4
1.
E |‘Z§\ " \ /
F. 12 \ e known functions
P ‘\ of M. E.g:
1.05 7 7
10515 A L,Al,[ﬂ)y" [1+L71M2)H
M pe pep 2 2

Normal shock waves (1)

A 8888 EE LTSS S S ST

vl iy
4 unknowns. PP Vi pLpL T

We can eliminate szzzzz7avrsr7777777
one by using:

P ’ A steady flow
£2 =RT, LN is observed!
/%3

Continuity: VI PLA=vy pp A

Momentum low: (p1 +p V12)A:(Pz + 02 V%)A

2 2
Energy equation: [C,,Tl +%ij VA= [c,,T2 +%]p2 vy A

10



Normal shock waves (2)

Mach number was the key to isentropic flows ...
... we should try to solve this problem for M,(M,).

= P 1/2
PV = — Py (yRT) 2 =
(41 RT, 1(7 1) ‘
2 2
v %
P+ vEi=.. — p1[1+’01—'j:... — pl[lﬂ/—‘z]:m
14l aj
p\l+yMy )=
2 2
Vi Rv _
CpTl+7='“ - Tl 1+7y 12 =..—/ Tl[l-l-y lMlzj:
2¢pqi 2
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Normal shock waves (3)

(@ (b) (c)
p 1/2 -1
PRI = gl T 75 W2
*hy-1*~0.5 - -
a'bets M, > Xy Mo 5 1+ 772
1+ yM{ 2 1+yMj 2

Mf[l+%4Mf](l+7M%y :Mzz[H%lezj(H 7M12)2

It is a quadratic formula for M3
We can arrange it into the polynomial form:

MAC)+M2()+()=0

Normal shock waves (4)

M,

o - n w > (4
o
Il

This branch belongs to an expansion shock.
Is it valid?
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Normal shock waves (5)

) 1+yM}
Pressureratio:  (b) — &:yig:f(Ml)
P 1+yMj
T 1+L_1M12
Temperature ratio: (¢) — —2=271=8(M1)
T =22
2
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Normal shock waves (6)

4

po_popr_\T &:[ﬂ]%l P

Pn Pnop Lop \D P
T Zi |t
h
) P2/p
4 s I
3 /T,

M,
03 5 2 25 3 Pi/Py

The entropy production

The entropy change can be related to pressure and
temperature ratios: p d

Tds=dh—"L=c,ar -RT "

4 r

ds _y dT dp

R y-1T »p

Szh_ ¥ lnﬁfln&
R y-1' I, p

For shocks:

Generally we can o —a 5251
state: e R :[ij’lﬂ . ek =P
. P2 P2

An expansion shock wave would lead to a decrease of
entropy, therefore it does not exist.

12
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Rankine-Hugoniot relations

Change of the thermodynamical state

1.4
1.35
] pal 13
1.2
Ti shock _ ) shock 12
Q ﬂ 1.15
Tl isent P2 isent 1
1.05

23 456 7 8 910

P2
Py
Weak shocks are almost isentropic.

... but they still propagate much faster than a.

Problem #6.4

There is a strong stationary normal
shock in a divergent channel at the
cross-section characterized by A,

y=14 M;, =2
Pin =100kPa, T, =270K
Aw/Ain =2 A()ut/Ain =3

a) Calculate the Mach number at the
outlet (M,,,)!

b) Please, determine the outlet
pressure (p,,,)!

To the solution

Oblique shockwaves (1)

u  flatplate

Flow direction is changed by & angle.

In still medium, shockwaves propagate faster
than the speed of sound, therefore: f>p

M, can be > 1 for an oblique shock.

13



Oblique shockwaves (2)

Vip =v sin 8
v, =V cos B
V2, = vy sin(f—5)
vy, =V, cos(B—5)
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Oblique shockwaves (3)

Control PVin = P2Vay
volume
"
77 Pvin Wiy =v2,) = pa = py
74
7
(:' vy =vy)=0  — v =vy
1(, L(>
h +7(v ‘F);/):h +7(v +
1 P In 1t 2 P 2n 2t
PiViy = PaVay
Same formulae o2 = po b o
are used for P+ PVin = P2t PaVay

normal shocks! W2 2
Iy 4n Iy +2n
2 2

Oblique shockwaves (4)
We take the normal components of the Mach numbers:
M, =M, sinfi My, =M,sin(8-5)

The static flow quantities can be calculated by using the gas
tables developed for normal shocks:

2
MZ+——
22 3 1n 7*1
n
27y
y—1
T
&:f(Mln) *2=8(M1n) &zh(Mln)
)41 T P

But the angle B is still unknown!

14



Oblique shockwaves (5)

\% V.
gh="r  1g(f-5)=-2
i Var

Vie = Vo

density ratio for a

normal shock:
8 _vuvg _py _ r+)Misin® B

ig(B-6) vavi p (y=1)M{sin® B+2
— 2

2
Mln

Now, we can plot B against M, for given values of 8.
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Oblique shockwaves (6)

2
85 __ (7H)A;I"’ the & iso-lines:
1g(B-0) (y-1)M;,+2 8
40
30

Normal shock 0
T u T T 2 %0 10

1 2 3 4 5 6 7 8

Oblique shockwaves (7)

Normal shock

e
» Above a minimum Mach number M, two B angles exist for
agiven 6. (Boyong > ,Bwfak) Onl]y the weak wave can be

observed in external flows. (The strong wave can only be
produced in wind tunnels.)

* M., depends on &. Bellow M,,;,, no oblique shock is
possible. A detached bow wave is formed.

+ We can also define a maximum angle §,,,,, above which no
oblique shockwave can exist for a glvenmﬁach number.

15



Oblique shockwaves (8)

M_const:y
’ W/ /e
\
\\
,streamlined body” ,pluff body”

Eg. if we increase the thickness of the wing the bow shock
can be detached, the flow goes through a normal shock,
therefore a we can expect a much higher pressure close to
the leading edge.
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Shadowgram of a NASA reentry unit

Mercury Project 1959

Cosmic bow shocks

A Hubble image

16



Earth's bow shock in solar wind
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Problem #6.5

a) Airflow / b)
2
M
M, T FFFFT
s M1 Mz
—_— —_—
TIITTF?
M, =3
M;=3 6=8 M,=7? P _,
M:? Pn

My=? My=? My=?

P
n To the solution

What kind of wave is this?

Pl

Wave patter around an F22 aircraft

17



High speed flow around an airfoil

S
%o“‘ Q-gf’ _Expansion

ir fl
Air flow Wake
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Expansion waves with condensation

Prandtl-Meyer expansion (1)
Compression + deceleration Expansion + acceleration

—_— - e
— 7 —

77777 ~.
Change of flow direction in supersonic flow (at least in
isentropic cases) is directly linked to acceleration and

deceleration.

We assume an isentropic process; thus we limit the
analyses to expansion and to elementary compression
cases.

18



Prandtl-Meyer expansion (2)

(v+dv) cos dS - v
__(v+dv) sindS

(v+dv)cosdS—v
(v+dv)sindS

1gf=

2015.04.29.

Prandtl-Meyer expansion (3)

(v+dv)cosdd—v

8 h= (v+dv)sindd

If do— 0, then cos do— 1, and sin d6— do.

dv
t =
sh vdd
pBis the Mach angle:
14 7a2 a
B
19 = a _ 1 _ dv ds dv e
Vv? —a? M1 vds v

Prandtl-Meyer expansion (4)
We can express dv/v in terms of the Mach number:

dv dM 1dT
==

v M 2T
%=1+7—_1MZ inwhich 7, = constant
——LdT =(y—1)M aM

dar _ (y-1)M?* am

T 1+72—1M2 M

7=l 710
a ST L am
v 12771 M 12Xy M

19



Prandtl-Meyer expansion (5)

dv 5 dv 1 dM
ds="Im* -1 T o
v vy M
2
VM2-1 am MoAM2-1 am
dé T . — S = jfli
1+L2 m: M 1 1+—}/2 m: M

This integral is the Prandtl-Meyer expansion function:

6 = P (o) a7
y-1 y+1
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Problem #6.6

There is a high speed air flow

through a convergent nozzle.

Downstream from the nozzle,

at a given point, the flow

rrrrrrr 45° direction is 45° with respect to
the axis.

A) What is the Mach number at
this point?

B) What is the maximum
redirection angle (in the
case op 0 ambient
pressure)?

To the solution

Hodograph (1)
Inconveniences:
1) the length of the M vector — o with increasing dangle
2) the length is not proportional to the velocity.

Therefore we will use M*=v/a* instead of M=v/a :

2 2 2

E%
|

|

\
1l

w2 L 2
T

NN
"!%‘_‘H

M2 :MZ[HL;IMZJ rl

2
M7= _prm® and M'=—F"F"—+
2+ (y-1)M? y+1-(y-1)M

20



Hodograph (2)

2 oM™
y+1-(y-1)M ™

as="Im2 2
v

The integral of ddleads to the formula of an epicycloid.

2015.04.29.

Hodograph (3)

& and M, are given.
- What is the resulting M,?

- What is the wave direction? M, )
The physical plane: — /\11‘4*2
0
The hodograph plane:

0.4
0.2
0
-0.2
-0.4

Problem #6.7

Please, solve graphically the double reflection problem
below. M,=1.28, 8=5°.

Determine M,, M; and the wave directions!

To the solution

21



Redirection of a channel flow

Co,

m,
S Sion
AY
ARG

v Fluctuating pressure with
. %y increased dissipation.

€,
*Pansio,

No reflected wave.

777777777% S (Only one expansion wave.)
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Waves past curved surfaces (1)

Expansion Compression

\

The flow is isentropic only in
the near wall region.

Waves past curved surfaces (2)

M=1.96

[An Album of Fluid Motion, 227]

22



“= s [An Album of Fluid
; Motion, 168]
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Laval nozzle

Pt subsonic flow
trans-sonic flow
with a normal shock

; supersonic flow

X
Shock tubes
An easy way to .
produce strong shocks The Riemann problem
or hypersonic flow. I i | 1 I
100 f ;
B [4 M 3§ 2 [1 |
R 7 expansion contact shock-
wave discontinuity ~ wave
10
= p
A \ P2=P3
10
7 T X
7 L 1—
|
2 4 6 8 10
% v X
The expansion wave ( VoazV |
always has a somewhat as™"a2
higher pressure ratio. Velocities in absolute frame X

23



Problem #6.8

100 What is the Mach number in absolute
B reference frame on the upstream and

4 downstream side of the contact

discontinuity, if the initial shock tube

7 temperature is

300 K and the initial pressure ratio is

7 100? (The shock tube operates with

£ dry air.)

™

2 4 6 8 10h
R

To the solution
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NPL 2” gun tunnel

[L.Davies: On the Equilibrium
—— i —i Piston Technique in Gun
Tunnels, 1968]

k-

4nn 3
Gradcm)  (213m)

Tt
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