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Different behavior...

Physical processes lead to a temporal equilibrium in many cases.

analitical solutions

Explicit Euler method:
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From the Taylor polynomial we can
express a differencing scheme of
first order accuracy:
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Note that, the error term is one
degree of magnitude higher.

Taylor polynomial of the solution from
point j to point j+1:
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This is an integration scheme of first
order accuracy.

When the differencial equation is given in
the explicit form:
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we can integral step by step, by assuming:
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Bacward Euler method

When F is evaluated in j+1, we
may end up with a more
complicated expression for u, ;.
This kind of discretization is
called implicit.

Another first order scheme:
up=ujyg+u'jy(—Ax)+of Ax)
from the backward Euler scheme we get:
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Now, we assume the differential equation
in the form:
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An implicit differencing scheme with second
order accuracy
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Adams-Basforth scheme
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An explicit integrating scheme with second order accuracy
It is often used for integrating the Navier-Stoket equations.

Approximation of the divergence
operator

From the volume integral of the divergence operator we can obtain the cell
average of the divergence term.
The Gauss-Ostrogradskij theorem for a vector quantity u:
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For simplicity, we denote components of u vector by u;. The cell-average of
the divergence operator is now:
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in which A, are the faces of the cell. The surface integral for each face is a
scalar product:
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i + o 1 interpolated to the cell surface.
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A 2 step 2" order explicit Runge-Kutta
type scheme
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1st step: Use the Euler method for geting into point j:
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Evaluate the derivative in point j:
d=flu,+o( Ax),x,)= flu,x,)+of Ax)=u' +o( Ax)
2nd step: Use CDS scheme around point j:
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Gradient

Adirect consequence of the Gauss-Ostrogradskij theorem:
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The i-th component of the approximate gradient can be evaluated
according to the following expression:
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A is the i-th component of the surface vector in Descartes system.

Spatial derivatives in finite volume
methods

The generic transport equation in integral form:
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In which @ is the mass concentration of a conserved quantity (eg. in kg/kg).

Spatial derivatives are always in div(...), grad(...) or div(grad(...)) forms.

We only need to look for the discrete approximations of these operators,

which is done - in the case of finite volume method - on the basis of surface and
volume integrals along with some spatial interpolations.

The numerical mesh around the cell having its center in point P:

Cell centroid.
P Here we store ¢p.

Face centroids.
Defined by surface vectors. Anything can be interpolated

from cells to surfaces...

The approximate Laplacian

Ap=V-V¢

When calculating the discrete approximation of the operator the gradient must
be interpolated onto the face centroids. This is denoted by < > in the following

formula:
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For most field variables - excepting for the pressure field — the face normal
component of the gradient vector can be calculated on a more simple way:
from ¢ values stored in the centers of the adjacent cells.

In this case the discrete form of the Laplacian operator can be calculated
as a linear combination of ¢ and the neighboring ¢ values:
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In which A are constant values, depending only on the mesh parameters.




