NANSYS

Chapter 1

Introduction and
FLUENT Data Structure

ANSYS, Inc.Proprietry
©2009 ANSYS, Inc

Introduction to UDF and FLUENT Data Structure
Introduction

° The FLUENT solver is a general-purpose code. In order to customize
the FLUENT solver, users can use their own C-codes called user-
defined functions (UDFs) to accomplish:

= Special boundary conditions

= Customized or solution dependent material properties
= New physical models

= Reaction rates

= Source terms

= Customized post-processing

= Solving user-supplied partial differential equations

= More

Introduction to UDF and FLUENT Data Structure
User Access to the FLUENT Solver

Introduction to UDF and FLUENT Data Structure

C Programming (1)

= Basic syntax rules:
= each statement must be terminated with a semicolon ;
= comments can be inserted anywhere between /* and */
= variables must be explicitly declared (unlike in FORTRAN)
= compound statements must be enclosed by braces { }
= functions have the following format:
return-value-type function-name (parameter-list)
{ function body }
= Macros are defined in the header files, they can be used just like functions
= Built-in data types: int, float, double, enum, boolean:
int niter, a; /* declaring ‘niter’ and ‘a’ as integers */
float dx[10]; /*‘dx’is a real array with 10 members, the
array index always starts from dx[0] */

enum {X, Y, Z}; /* X, Y, Z are enumeration constants 0, 1, 2 */

Introduction to UDF and FLUENT Data Structure
C Programming (2)

° pointer is a special kind of variable that contains the memory
address, not content, of another variable
° Pointers are declared using the * notation:
int *ip; /* ip is declared as a pointer to integer */
° We can make a pointer point to the address of predefined variable as
follows:
int a=1;
int *ip;
ip = &a; /* &a returns the address of variable a */
printf (“content of address pointed to by ip = %d\n”, *ip);
° Pointers are also used to point to the beginning of an array
= Thus pointers are used to address arrays in C
° Array variables can be defined using the notation name [size]
where name is the variable name and size is an integer which defines

the number of elements in the array (from O to size-1)

ANSYS, In

Introduction to UDF and FLUENT Data Structure
C Programming (3)

Segregated PBCS DBCS

L]

Solve Mass,
Solve M: Momentum, __
Species
]

Solve U-Momentum

Solve V-Momentum
Solve W-Momentum

Solve Mass Continuity;
Update Velocity

T

I;I

= Operators
= (assignment)
+, -, *, /, % (modulus)
<, >, >=, <= , ==, I=
++ increment; i++ is “post-increment”: use the current value of i
in the expression, then increment i by 1 (i=i+1)

—— decrement: j—— post-decrement, use the current value of j,
then decrement j by 1 (3=3j-1)

+= addition assignment:

agg += single; /* it means agg=agg+single; */
*= multiplication assignment, —= subtraction assignment,
/= division assignment

Introduction to UDF and FLUENT Data Structure
C Programming (4)

NANSYS

= Basic control structures For Loops:
for (k=0; k < NUM; k++)
if (..) <statement>;
<statement>;
While Loops:
if (.) while (..)
<statement>; <statement>;
else
<statement>; .
Conditional Operator (? :)
(condition ? operand a : operand b)
if (..)
<statement>; example: false
else if (..) real At = (rp_axi @ :):
<statement>;
true

p— April 0, 2009
s, Inc. Al rights eserved. - Inventory 002686

Introduction to UDF and FLUENT Data Structure
CFD Programming in FLUENT

* We (as CFD programmers in FLUENT) want to know how FLUENT
organizes data so that we know:
= How to access mesh information for a particular cell zone or a face zone
= Cell centroids, cell volumes, the neighbors, etc.
= Face centroids, face areas, face normal directions (vectors), etc.

Introduction to UDF and FLUENT Data Structure

The Domain

° Domain is the set of connectivity and hierarchy info for the entire
data structure in a given problem for single phase flows. It includes:

all fluid zones (‘fluid threads’)

all solid zones (‘solid threads”)

all boundary zones (‘boundary threads”)

* Cell: Cell is the computational unit, conservation equations are
solved over each cell

® Face: direction is in the outward normal
° Threads: represent the collection of cells or faces; a Thread
represents a fluid or solid or boundary zone
° multiphase simulations (singlephase simulations use single domain
only)
= Each phase has its own “Domain-structure”

= Geometric and common property information are shared among ‘sub-
domains’

= Multiphase UDF will be discussed later

April 30, 2009
Inventory #002686

Introduction to UDF and FLUENT Data Structure
The Threads

° A Thread is a sub-set of the Domain structure
° Individual ‘fluid’, ‘solid’ and each ‘boundary’ zones are
identified as ‘zones’ and their datatype is Thread

° ‘Zone’ and ‘Thread’ terms are often used interchangeably

= How to access field data for cells (and faces): pressure, velocity, density, etc.
= How to efficiently loop through these cells or faces in the codes

° How to supply customized source terms, boundary conditions, and fluid
properties, etc., to the solver

* Some further details about Zone/Thread ID and Thread-
datatype:
Zones are identified at mesh level with an integer ID in the

Define/Boundary Condition panel

° How to modify the behaviors or specific model parameters for various
physical models as in turbulence, reactions kinetics, multiphase, and
dynamic mesh, etc.

* How to implement user’s own governing equations in the finite-volume
framework of FLUENT solver

ANSYS, Inc Proprietary N April 30, 2009
©2009 ANSYS, Inc. Al rightsreserved. -8 Inventory H002686

Introduction to UDF and FLUENT Data Structure
Data Structure Overview

NANSYS

/face
Domain

cell cell l

Thread

Fluid (cell thread or zone)

Boundary (face thréad or zone)

ANSYS, Inc. Pr

y April 30, 2009
©2009 ANSYS, Inc. Al rights reserved K Inventory H002686

Threads, a Fluent-specific datatype, store structured information
about the mesh, connectivity, models, property, etc. all in one place

Users identify zones through the ID’s

Zone/Thread-ID and Threads are correlated through UDF
macro’s

Introduction to UDF and FLUENT Data Structure
Cell and Face Datatypes

* Control volumes of fluid and solid zones are also called ‘cells’ in
FLUENT

= The data structure for the cell zones is typed as ‘cell_t’ (the cell
thread index)

= The data structure for the cell faces is typed as ‘face_t’ (the face
thread index)

* A fluid or solid zone is called a cell zone, which can be accessed by
using cell threads

° Boundary or internal faces can be accessed by using face threads

ANSYS, In
©2000 A1

Introduction to UDF and FLUENT Data Structure

Some additional info on Faces

Introduction to UDF and FLUENT Data Structure
Geometry Macros

* Each Control volume has a finite number of faces

= Faces on the boundary are also typed ‘face_t’; their
ensemble are listed as boundary face-threads with the
fluid & solid cell-threads under Define—
Boundary_Condition panel

= Those faces which are inside the flow-domain and do not
share any external boundary are not accessible from GUI
(because you do not need them)

= They can still be accessed from User-Defined-Functions

Introduction to UDF and FLUENT Data Structure
Fluent UDF Data Structure Summary

= The data structure for accessing a cell zone is typed as ‘cell_t’
(the cell thread index); the data structure for faces is typed as
‘face_t’ (the face thread index)

Boundary face-thread

Fluid cell-thread /the boundary-face ensemble

the Control-volume
ensemble s . ¢ Internal face-thread
the Internal-face ensemble
associated to cell-threads
Nodes [
Type Example Declaration
Domain *d d is a pointer to domain thread
Thread *t t is a pointer to thread
cell t c c is cell thread index
face_t £ £ isa face thread index
Node *node node is pointer to a node

Introduction to UDF and FLUENT Data Structure
Fluent UDF Data Structure Summary (2)

¢ Bremdary Conditions

* Each thread (zone) has a unique integer ID
Zone Type:

available in the boundary condition panel (or can — e
be listed by the list-zone TUI command: nbke-

/grid/modify-zones/list-zones) v i

default-interior:001 outflow

* Given a correct ID, the Lookup_Thread macro
can retrieve the thread pointer

pressune—far-Seld
Pross Uik
pressuee-outiet
Sy
webocity-inket

int ID=7;
Thread *tf=Lookup_Thread(domain, ID);

* Conversely, given a thread pointer tf, the zone ID
can be retrieved

ID=THREAD_ID (tf) ;

* Once we have the correct pointer (for a specific
zone), we can access the members belonging to
the zone without any problem. Thread pointer
provides the leading address of the thread (zone)

C_NNODES (¢, t) Number of nodes in a cell
C_NFACES (c, t) No. of faces in a cell
F_NNODES (£, t) No. of nodes in a face
C_CENTROID(x, ¢, t) X,y z-coords of cell centroid
F_CENTROID (x, £, t) Xx,Y,z-coords of face centroid
F_AREA(A, £, t) Area vector of a face;

NV_MAG (A) Area-magnitude
C_VOLUME (c, t) Volume of a cell C CENTROID (X. ¢, £) ; X: X[3]
C_VOLUME_2D(c, t) Volume of a2D cell C_NNODES (c, t) =

(Depth is 1m in 2D; 2*%t m in axi-symmetric solver §-NFACES (c, t)
F_NNODES (f,t) =

A Hex cell

Faces.

Nodes:

Location of cell variables

each

NODE_X (nn) Node x-coord; (nn is a node pointer)
NODE_Y (nn) Node x-coord;
NODE_Z (nn) Node x-coord;

Many more are available. See the FLUENT UDF Manual

Introduction to UDF and FLUENT Data Structure
Macros for Cell Variables

« C_R(c,t) Density

e« C_P(c,t) Pressure

¢« C_U(c,t)

« C_V(c,t) Velocity components

¢« C_W(c,t)

¢« C_T(c,t) Temperature

« C_H(c,t) Enthalpy

¢ C_K(c,t) Turbulent kinetic energy

e« C_D(c,t) Turbulent energy dissipation

+ C YI(c,t,i)
+ C_UDSI(c,t,i)

Species mass fraction
User defined scalar

t is a cell-thread pointer, ¢ is a cell thread index, i is an integer
for indexing

Introduction to UDF and FLUENT Data Structure
Macros for Cell Variables (2)

* More cell variables

+ C_DUDX(c,t)
- C_DUDY(c,t)
.+ C_DUDZ(c,t)
« C_DVDX(c,t)
« C_DVDY(c,t)
« C_DVDZ(c,t)
« C_DWDX(c,t)
+ C_DWDY(c,t)
+ C_DWDZ(c,t)
+ C_MU L(c,t)
+ C_MU T(c,t)
+ C_MU_EFF (c,t)
« C_DP(c,t)[i]
+ C_D_DENSITY (c,t) [i]

Velocity derivatives

Laminar viscosity
Turbulent viscosity

Pressure derivatives
Density derivatives

ANSYS, In
©2000 A1

Introduction to UDF and FLUENT Data Structure

Loop Macros in UDF

Introduction to UDF and FLUENT Data Structure
The Header Files

thread_loop_c(ct,d) { } forloop over cell threads in domain d

thread_loop_f£ (ft,d) { } forloop over face threads in domain d
(Note: ct, ft and d are pointers to Thread)

begin_c_loop(c, t)
(.}
end_c_loop (c,t) for loop over cells in a given cell thread t

begin_f loop(f, f_thread)
{...}
end_f_loop(f, £ _thread) forloop over all facesin a given
face thread f_thread

Introduction to UDF and FLUENT Data Structure

Macros for Accessing Cells/Faces

° For any given face, the cell from which the
face normal vector points away is called the CO
cell; and the cell which the face normal vector
points at is called the C1 cell. The following
program fragment calculate the total cell
volume next to a given face zone with zone ID
on the CO0 side:

+ The udf-macros are defined in the ‘ud£.h’ file
+ ud£.his a fluent header file in the {Fluent installed
directory}/Fluentl12.y/src/ directory
+ udf.h must be included at the top in each and every udf file
« Afile may contain more than one UDF
o User can use multiple files for UDF
+ Any UDF you might write must use one of the ‘DEFINE_.." macros from
this ud£ . h file
+ There are many more header files stored in the same directory can be
browsed by users

#define DEFINE PROFILE (name, t, i) void name (Thread *t, int i)
#define DEFINE_ PROPERTY (name,c,t) real name(cell t c, Thread *t)
#define DEFINE SOURCE (name, c, t, dS, i) \

real name(cell_t c, Thread *t, real dS[], int i)
#define DEFINE_INIT(name, domain) void name(Domain *domain)
#define DEFINE_ADJUST (name, domain) void name (Domain *domain)
#define DEFINE DIFFUSIVITY (name, c, t, i) \

real name(cell_t c, Thread *t, int i)

Thread *tf, *t0;
face_t £;
cell_t cO0;

real totalv=0.;
tf = Lookup_Thread(domain, ID);
t0 = THREAD_TO (tf); a face normal
begin_f_loop (£, tf) vector for the CO cell
{ cO=F_CO(f, tf); /*get the c0 thread */
totalV += C_VOLUME (c0, tO);

}
end_f_loop(f, tf)

Introduction to UDF and FLUENT Data Structure
Top-Level UDF Macros

e User’s own codes must use the top-level UDF macros in order to
communicate with the FLUENT solver

= Profiles : DEFINE_PROFILE
= Source terms : DEFINE_SOURCE

= Properties : DEFINE_PROPERTY
= User-defined Scalars : DEFINE_UNSTEADY

DEFINE_FLUX
DEFINE_DIFFUSIVITY
Initialization : DEFINE_INIT
= Global Functions : DEFINE_ADJUST
DEFINE_ON_DEMAND
DEFINE_RW_FILE
= Wall-heat-flux : DEFINE_HEAT_FLUX
®= Model-Specific Functions : DEFINE_DPM ..
DEFINE_SR_RATE
DEFINE_VR_RATE

Refer to the UDF Manual for a complete list

Al ights reserved.

