
© Fluent Inc. 11/16/2010
© 2006 ANSYS, Inc.  All rights reserved. ANSYS, Inc. Proprietary1-1

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc.  All rights reserved.
April 30, 2009

Inventory #002686

Advanced FLUENT
User-Defined Functions

Chapter 1

Introduction and
FLUENT Data Structure

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc.  All rights reserved. 1-2
April 30, 2009

Inventory #002686

Introduction

• The FLUENT solver is a general-purpose code. In order to customize 

the FLUENT solver, users can use their own C-codes called user-

defined functions (UDFs) to accomplish:

� Special boundary conditions

� Customized or solution dependent material properties

� New physical models

� Reaction rates 

� Source terms

� Customized post-processing

� Solving user-supplied partial differential equations

� More ….
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User Access to the FLUENT Solver
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C Programming (1)

� Basic syntax rules:

� each statement must be terminated with a semicolon ;

� comments can be inserted anywhere between  /* and  */

� variables must be explicitly declared (unlike in FORTRAN)

� compound statements must be enclosed by braces {  }

� functions have the following format:

return-value-type function-name (parameter-list)

{ function body }

� Macros are defined in the header files, they can be used just like functions

� Built-in data types: int, float, double, enum, boolean:

int  niter, a; /* declaring ‘niter’ and ‘a’ as integers */

float  dx[10]; /* ‘dx’ is a real array with 10 members, the

array index always starts from dx[0]  */

enum {X, Y, Z}; /* X, Y, Z are enumeration constants 0, 1, 2 */
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C Programming (2)

• pointer is a special kind of variable that contains the memory 
address, not content, of another variable

• Pointers are declared using the * notation:

int *ip; /* ip is declared as a pointer to integer */

• We can make a pointer point to the address of predefined variable as 

follows:
int a=1;
int *ip;
ip = &a; /* &a returns the address of variable a */
printf(“content of address pointed to by ip = %d\n”, *ip);

• Pointers are also used to point to the beginning of an array

� Thus pointers are used to address arrays in C

• Array variables can be defined using the notation name[size]

where name is the variable name and size is an integer which defines 

the number of elements in the array (from 0 to size-1)
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C Programming (3)

� Operators

= (assignment)

+, -, *, /, % (modulus)

<, >, >=, <= , ==, !=

++   increment;   i++ is “post-increment”: use the current value of  i

in the expression, then increment i by 1 (i=i+1) 

-- decrement:   j-- post-decrement, use the current value of j, 
then decrement j by 1 (j=j-1)

+= addition assignment:

agg += single; /* it means agg=agg+single;  */

*= multiplication assignment, -= subtraction assignment, 

/= division assignment
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C Programming (4)

� Basic control structures

if ( … )

<statement>;

if ( …)

<statement>;

else 

<statement>;

if ( …)

<statement>;

else if ( … )

<statement>;

For Loops:

for ( k=0; k < NUM; k++ )

<statement>;

While Loops:

while ( … )

<statement>;

Conditional Operator (? : )
( condition ?  operand a : operand b )

example:
real  At = (rp_axi ? At*2*M_PI : At  );

true

false
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CFD Programming in FLUENT

• We (as CFD programmers in FLUENT) want to know how FLUENT 

organizes data so that we know:

� How to access mesh information for a particular cell zone or a face zone

� Cell centroids, cell volumes, the neighbors, etc.

� Face centroids, face areas, face normal directions (vectors), etc.

� How to access field data for cells (and faces): pressure, velocity, density, etc.

� How to efficiently loop through these cells or faces in the codes

• How to supply customized source terms, boundary conditions, and fluid 

properties, etc.,  to the solver

• How to modify the behaviors or  specific model parameters for various 

physical models as in turbulence, reactions kinetics, multiphase, and 

dynamic mesh, etc. 

• How to implement user’s own governing equations in the finite-volume 

framework of FLUENT solver
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Data Structure Overview  
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Thread

face
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Boundary (face thread or zone) Fluid (cell thread or zone)

Domain

Cell

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc.  All rights reserved. 1-10
April 30, 2009

Inventory #002686

The Domain

• Domain is the set of connectivity and hierarchy info for the entire 
data structure in a given problem for single phase flows.  It includes:

� all fluid zones (‘fluid threads’)

� all solid zones (‘solid threads’)

� all boundary zones (‘boundary threads’)

• Cell: Cell is the computational unit, conservation equations are 
solved over each cell

• Face:    direction is in the outward normal

• Threads:  represent the collection of cells or faces; a Thread 
represents a fluid or solid or boundary zone

• multiphase simulations (singlephase simulations use single domain 
only)

� Each phase has its own “Domain-structure”

� Geometric and common property information are shared among ‘sub-
domains’

� Multiphase UDF will be discussed later
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The Threads

• A Thread is a sub-set of the Domain structure

• Individual ‘fluid’, ‘solid’ and each ‘boundary’ zones are 

identified as ‘zones’ and their datatype is  Thread

• ‘Zone’ and ‘Thread’ terms are often used interchangeably 

• Some further details about Zone/Thread ID and Thread-

datatype:

� Zones are identified at mesh level with an integer ID in the  

Define/Boundary Condition panel

� Threads, a Fluent-specific datatype,  store structured information 

about the mesh, connectivity, models, property, etc. all in one place

� Users identify zones through the ID’s

� Zone/Thread-ID and Threads are correlated through UDF 

macro’s
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Cell and Face Datatypes 

• Control volumes  of fluid and solid zones are also called ‘cells’ in 

FLUENT

� The data structure for the cell zones is typed as ‘cell_t’ (the cell 

thread index)

� The data structure for the cell faces is typed as ‘face_t’ (the face 

thread index)

• A fluid or solid zone is called a cell zone, which can be accessed by 

using  cell threads

• Boundary  or internal faces can be accessed by using face threads 
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Some additional info on Faces

• Each Control volume has a finite number of faces

� Faces on the boundary are also typed ‘face_t’; their 

ensemble are listed as boundary face-threads with the 

fluid & solid cell-threads under Define-

Boundary_Condition panel 

� Those faces which are inside the flow-domain and do not 

share any external boundary are not accessible from GUI 

(because you do not need them)

� They can still be accessed from User-Defined-Functions
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Fluent UDF Data Structure Summary

� The data structure for  accessing  a cell zone is typed as ‘cell_t’ 

(the cell thread index); the data structure for  faces is typed as 

‘face_t’ (the face thread index)

TypeType ExampleExample DeclarationDeclaration

Domain *d d is a pointer to domain thread

Thread *t t is a pointer to thread

cell_t c c is cell thread index 

face_t f f is a face thread index

Node *node node is pointer to a node

Boundary face-thread

the boundary-face ensembleFluid cell-thread

the Control-volume 

ensemble Internal face-thread

the Internal-face ensemble

associated to cell-threads
Nodes
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Fluent UDF Data Structure Summary (2)

• Each thread (zone) has a unique integer ID 

available in the boundary condition panel (or can 

be listed by the list-zone TUI command:  

/grid/modify-zones/list-zones)

• Given a correct ID, the Lookup_Thread macro 

can retrieve the thread pointer

int ID=7;

Thread *tf=Lookup_Thread(domain, ID);

• Conversely, given a thread pointer tf, the zone ID 

can be retrieved 

ID=THREAD_ID(tf);

• Once we have the correct pointer (for a specific 

zone), we can access the members belonging to 

the zone without any problem. Thread pointer 

provides the leading address of the thread (zone)
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Geometry Macros

• C_NNODES(c, t) Number of nodes in a cell

• C_NFACES(c, t) No. of faces in a cell

• F_NNODES(f, t) No. of nodes in a face

• C_CENTROID(x, c, t) x, y, z-coords of cell  centroid

• F_CENTROID(x, f, t) x, y, z-coords of face centroid

• F_AREA(A, f, t) Area vector of a face; 

• NV_MAG(A) Area-magnitude

• C_VOLUME(c, t) Volume of a cell

• C_VOLUME_2D(c, t) Volume of a 2D cell 

(Depth is 1m in 2D; 2*π m in axi-symmetric solver )

• NODE_X(nn) Node x-coord; (nn is a node pointer)

• NODE_Y(nn) Node x-coord; 

• NODE_Z(nn) Node x-coord;

Many more are available. See the FLUENT UDF Manual

Location of cell variables
C_CENTROID(X,c,t); X: X[3]

C_NNODES(c,t) = 8

C_NFACES(c,t) = 6

F_NNODES(f,t) = 4 each

A Hex cell

Faces

Nodes
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Macros for Cell Variables

• C_R(c,t) Density

• C_P(c,t) Pressure

• C_U(c,t)

• C_V(c,t) Velocity components

• C_W(c,t)

• C_T(c,t) Temperature

• C_H(c,t) Enthalpy

• C_K(c,t) Turbulent kinetic energy

• C_D(c,t) Turbulent energy dissipation

• C_YI(c,t,i) Species mass fraction

• C_UDSI(c,t,i)   User defined scalar

t is a cell-thread pointer, c is a cell thread index, i is an integer 

for indexing
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Macros for Cell Variables (2)

• C_DUDX(c,t)                   

• C_DUDY(c,t)

• C_DUDZ(c,t)

• C_DVDX(c,t)

• C_DVDY(c,t) Velocity derivatives

• C_DVDZ(c,t)

• C_DWDX(c,t)

• C_DWDY(c,t)

• C_DWDZ(c,t)

• C_MU_L(c,t) Laminar viscosity

• C_MU_T(c,t) Turbulent viscosity

• C_MU_EFF(c,t)

• C_DP(c,t)[i] Pressure derivatives

• C_D_DENSITY(c,t)[i] Density derivatives

• More cell variables
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Loop Macros in UDF

� thread_loop_c(ct,d) {  } for loop over cell threads in domain d

� thread_loop_f(ft,d) {  } for loop over face threads in domain d

(Note: ct, ft and d are pointers to Thread)

� begin_c_loop(c, t)

{…}

end_c_loop (c,t) for loop over cells in a given cell thread t

� begin_f_loop(f, f_thread)

{ … }

end_f_loop(f, f_thread) for loop over all faces in a given 

face thread f_thread
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Macros for Accessing Cells/Faces

• For any given face, the cell from which the 
face normal vector points away is called the C0
cell; and the cell which the face normal vector 
points at is called the C1 cell. The following 
program fragment calculate the total cell 
volume next to a given face zone with zone ID 
on the C0 side:

C0

a face normal
vector for the C0 cell

C1

Thread *tf, *t0;

face_t f;

cell_t c0; 

real totalV=0.;

tf = Lookup_Thread(domain, ID);

t0 = THREAD_T0(tf);

begin_f_loop(f, tf)

{ c0=F_C0(f, tf);   

totalV += C_VOLUME(c0, t0);

}

end_f_loop(f, tf)

/*get the c0 thread */
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Top-Level UDF Macros

• User’s own codes must use the top-level UDF macros in order to 
communicate with the FLUENT solver

� Profiles : DEFINE_PROFILE

� Source terms : DEFINE_SOURCE
� Properties : DEFINE_PROPERTY
� User-defined Scalars : DEFINE_UNSTEADY

DEFINE_FLUX

DEFINE_DIFFUSIVITY

� Initialization : DEFINE_INIT
� Global Functions : DEFINE_ADJUST

DEFINE_ON_DEMAND

DEFINE_RW_FILE

� Wall-heat-flux : DEFINE_HEAT_FLUX
� Model-Specific Functions : DEFINE_DPM_…

DEFINE_SR_RATE

DEFINE_VR_RATE

…

Refer to the UDF Manual for a complete list
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The Header Files

� The udf-macros are defined in the ‘udf.h’ file

� udf.h is a fluent header file in the {Fluent installed 

directory}/Fluent12.y/src/ directory

� udf.h must be included at the top in each and every udf file
� A file may contain more than one UDF
� User can use multiple files for UDF

� Any UDF you might write must use one of the ‘DEFINE_…’ macros from 

this udf.h file

� There are many more header files stored in the same directory can be 
browsed by users

#define DEFINE_PROFILE(name, t, i) void name(Thread *t, int i)

#define DEFINE_PROPERTY(name,c,t) real name(cell_t c, Thread *t)

#define DEFINE_SOURCE(name, c, t, dS, i) \

real name(cell_t c, Thread *t, real dS[], int i)

#define DEFINE_INIT(name, domain) void name(Domain *domain)

#define DEFINE_ADJUST(name, domain) void name(Domain *domain) 

#define DEFINE_DIFFUSIVITY(name, c, t, i) \

real name(cell_t c, Thread *t, int i)


