
© Fluent Inc. 11/16/2010
© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary1-1

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved.
April 30, 2009

Inventory #002686

Advanced FLUENT
User-Defined Functions

Chapter 1

Introduction and
FLUENT Data Structure

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-2
April 30, 2009

Inventory #002686

Introduction

• The FLUENT solver is a general-purpose code. In order to customize

the FLUENT solver, users can use their own C-codes called user-

defined functions (UDFs) to accomplish:

� Special boundary conditions

� Customized or solution dependent material properties

� New physical models

� Reaction rates

� Source terms

� Customized post-processing

� Solving user-supplied partial differential equations

� More ….

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-3
April 30, 2009

Inventory #002686

User Access to the FLUENT Solver

User-Defined Properties

User-Defined BCs

User Defined

INITIALIZE

Segregated PBCS

Exit Loop

Repeat

Check Convergence

Update Properties

Solve Turbulence Equation(s)

Solve Species

Solve Energy

Initialize Begin Loop

DBCS

Solve Other Transport Equations as required

Solver?

Solve Mass Continuity;

Update Velocity

Solve U-Momentum

Solve V-Momentum

Solve W-Momentum

Solve Mass

& Momentum

Solve Mass,

Momentum,
Energy,

Species

User-

defined
ADJUST

Source terms
Source terms

Source terms

Source

terms

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-4
April 30, 2009

Inventory #002686

C Programming (1)

� Basic syntax rules:

� each statement must be terminated with a semicolon ;

� comments can be inserted anywhere between /* and */

� variables must be explicitly declared (unlike in FORTRAN)

� compound statements must be enclosed by braces { }

� functions have the following format:

return-value-type function-name (parameter-list)

{ function body }

� Macros are defined in the header files, they can be used just like functions

� Built-in data types: int, float, double, enum, boolean:

int niter, a; /* declaring ‘niter’ and ‘a’ as integers */

float dx[10]; /* ‘dx’ is a real array with 10 members, the

array index always starts from dx[0] */

enum {X, Y, Z}; /* X, Y, Z are enumeration constants 0, 1, 2 */

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-5
April 30, 2009

Inventory #002686

C Programming (2)

• pointer is a special kind of variable that contains the memory
address, not content, of another variable

• Pointers are declared using the * notation:

int *ip; /* ip is declared as a pointer to integer */

• We can make a pointer point to the address of predefined variable as

follows:
int a=1;
int *ip;
ip = &a; /* &a returns the address of variable a */
printf(“content of address pointed to by ip = %d\n”, *ip);

• Pointers are also used to point to the beginning of an array

� Thus pointers are used to address arrays in C

• Array variables can be defined using the notation name[size]

where name is the variable name and size is an integer which defines

the number of elements in the array (from 0 to size-1)

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-6
April 30, 2009

Inventory #002686

C Programming (3)

� Operators

= (assignment)

+, -, *, /, % (modulus)

<, >, >=, <= , ==, !=

++ increment; i++ is “post-increment”: use the current value of i

in the expression, then increment i by 1 (i=i+1)

-- decrement: j-- post-decrement, use the current value of j,
then decrement j by 1 (j=j-1)

+= addition assignment:

agg += single; /* it means agg=agg+single; */

*= multiplication assignment, -= subtraction assignment,

/= division assignment

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-7
April 30, 2009

Inventory #002686

C Programming (4)

� Basic control structures

if (…)

<statement>;

if (…)

<statement>;

else

<statement>;

if (…)

<statement>;

else if (…)

<statement>;

For Loops:

for (k=0; k < NUM; k++)

<statement>;

While Loops:

while (…)

<statement>;

Conditional Operator (? :)
(condition ? operand a : operand b)

example:
real At = (rp_axi ? At*2*M_PI : At);

true

false

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-8
April 30, 2009

Inventory #002686

CFD Programming in FLUENT

• We (as CFD programmers in FLUENT) want to know how FLUENT

organizes data so that we know:

� How to access mesh information for a particular cell zone or a face zone

� Cell centroids, cell volumes, the neighbors, etc.

� Face centroids, face areas, face normal directions (vectors), etc.

� How to access field data for cells (and faces): pressure, velocity, density, etc.

� How to efficiently loop through these cells or faces in the codes

• How to supply customized source terms, boundary conditions, and fluid

properties, etc., to the solver

• How to modify the behaviors or specific model parameters for various

physical models as in turbulence, reactions kinetics, multiphase, and

dynamic mesh, etc.

• How to implement user’s own governing equations in the finite-volume

framework of FLUENT solver

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-9
April 30, 2009

Inventory #002686

Data Structure Overview

Domain

Cell

Thread

face

cellcell

Boundary (face thread or zone) Fluid (cell thread or zone)

Domain

Cell

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-10
April 30, 2009

Inventory #002686

The Domain

• Domain is the set of connectivity and hierarchy info for the entire
data structure in a given problem for single phase flows. It includes:

� all fluid zones (‘fluid threads’)

� all solid zones (‘solid threads’)

� all boundary zones (‘boundary threads’)

• Cell: Cell is the computational unit, conservation equations are
solved over each cell

• Face: direction is in the outward normal

• Threads: represent the collection of cells or faces; a Thread
represents a fluid or solid or boundary zone

• multiphase simulations (singlephase simulations use single domain
only)

� Each phase has its own “Domain-structure”

� Geometric and common property information are shared among ‘sub-
domains’

� Multiphase UDF will be discussed later

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-11
April 30, 2009

Inventory #002686

The Threads

• A Thread is a sub-set of the Domain structure

• Individual ‘fluid’, ‘solid’ and each ‘boundary’ zones are

identified as ‘zones’ and their datatype is Thread

• ‘Zone’ and ‘Thread’ terms are often used interchangeably

• Some further details about Zone/Thread ID and Thread-

datatype:

� Zones are identified at mesh level with an integer ID in the

Define/Boundary Condition panel

� Threads, a Fluent-specific datatype, store structured information

about the mesh, connectivity, models, property, etc. all in one place

� Users identify zones through the ID’s

� Zone/Thread-ID and Threads are correlated through UDF

macro’s

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-12
April 30, 2009

Inventory #002686

Cell and Face Datatypes

• Control volumes of fluid and solid zones are also called ‘cells’ in

FLUENT

� The data structure for the cell zones is typed as ‘cell_t’ (the cell

thread index)

� The data structure for the cell faces is typed as ‘face_t’ (the face

thread index)

• A fluid or solid zone is called a cell zone, which can be accessed by

using cell threads

• Boundary or internal faces can be accessed by using face threads

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-13
April 30, 2009

Inventory #002686

Some additional info on Faces

• Each Control volume has a finite number of faces

� Faces on the boundary are also typed ‘face_t’; their

ensemble are listed as boundary face-threads with the

fluid & solid cell-threads under Define-

Boundary_Condition panel

� Those faces which are inside the flow-domain and do not

share any external boundary are not accessible from GUI

(because you do not need them)

� They can still be accessed from User-Defined-Functions

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-14
April 30, 2009

Inventory #002686

Fluent UDF Data Structure Summary

� The data structure for accessing a cell zone is typed as ‘cell_t’

(the cell thread index); the data structure for faces is typed as

‘face_t’ (the face thread index)

TypeType ExampleExample DeclarationDeclaration

Domain *d d is a pointer to domain thread

Thread *t t is a pointer to thread

cell_t c c is cell thread index

face_t f f is a face thread index

Node *node node is pointer to a node

Boundary face-thread

the boundary-face ensembleFluid cell-thread

the Control-volume

ensemble Internal face-thread

the Internal-face ensemble

associated to cell-threads
Nodes

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-15
April 30, 2009

Inventory #002686

Fluent UDF Data Structure Summary (2)

• Each thread (zone) has a unique integer ID

available in the boundary condition panel (or can

be listed by the list-zone TUI command:

/grid/modify-zones/list-zones)

• Given a correct ID, the Lookup_Thread macro

can retrieve the thread pointer

int ID=7;

Thread *tf=Lookup_Thread(domain, ID);

• Conversely, given a thread pointer tf, the zone ID

can be retrieved

ID=THREAD_ID(tf);

• Once we have the correct pointer (for a specific

zone), we can access the members belonging to

the zone without any problem. Thread pointer

provides the leading address of the thread (zone)

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-16
April 30, 2009

Inventory #002686

Geometry Macros

• C_NNODES(c, t) Number of nodes in a cell

• C_NFACES(c, t) No. of faces in a cell

• F_NNODES(f, t) No. of nodes in a face

• C_CENTROID(x, c, t) x, y, z-coords of cell centroid

• F_CENTROID(x, f, t) x, y, z-coords of face centroid

• F_AREA(A, f, t) Area vector of a face;

• NV_MAG(A) Area-magnitude

• C_VOLUME(c, t) Volume of a cell

• C_VOLUME_2D(c, t) Volume of a 2D cell

(Depth is 1m in 2D; 2*π m in axi-symmetric solver)

• NODE_X(nn) Node x-coord; (nn is a node pointer)

• NODE_Y(nn) Node x-coord;

• NODE_Z(nn) Node x-coord;

Many more are available. See the FLUENT UDF Manual

Location of cell variables
C_CENTROID(X,c,t); X: X[3]

C_NNODES(c,t) = 8

C_NFACES(c,t) = 6

F_NNODES(f,t) = 4 each

A Hex cell

Faces

Nodes

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-17
April 30, 2009

Inventory #002686

Macros for Cell Variables

• C_R(c,t) Density

• C_P(c,t) Pressure

• C_U(c,t)

• C_V(c,t) Velocity components

• C_W(c,t)

• C_T(c,t) Temperature

• C_H(c,t) Enthalpy

• C_K(c,t) Turbulent kinetic energy

• C_D(c,t) Turbulent energy dissipation

• C_YI(c,t,i) Species mass fraction

• C_UDSI(c,t,i) User defined scalar

t is a cell-thread pointer, c is a cell thread index, i is an integer

for indexing

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-18
April 30, 2009

Inventory #002686

Macros for Cell Variables (2)

• C_DUDX(c,t)

• C_DUDY(c,t)

• C_DUDZ(c,t)

• C_DVDX(c,t)

• C_DVDY(c,t) Velocity derivatives

• C_DVDZ(c,t)

• C_DWDX(c,t)

• C_DWDY(c,t)

• C_DWDZ(c,t)

• C_MU_L(c,t) Laminar viscosity

• C_MU_T(c,t) Turbulent viscosity

• C_MU_EFF(c,t)

• C_DP(c,t)[i] Pressure derivatives

• C_D_DENSITY(c,t)[i] Density derivatives

• More cell variables

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-19
April 30, 2009

Inventory #002686

Loop Macros in UDF

� thread_loop_c(ct,d) { } for loop over cell threads in domain d

� thread_loop_f(ft,d) { } for loop over face threads in domain d

(Note: ct, ft and d are pointers to Thread)

� begin_c_loop(c, t)

{…}

end_c_loop (c,t) for loop over cells in a given cell thread t

� begin_f_loop(f, f_thread)

{ … }

end_f_loop(f, f_thread) for loop over all faces in a given

face thread f_thread

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-20
April 30, 2009

Inventory #002686

Macros for Accessing Cells/Faces

• For any given face, the cell from which the
face normal vector points away is called the C0
cell; and the cell which the face normal vector
points at is called the C1 cell. The following
program fragment calculate the total cell
volume next to a given face zone with zone ID
on the C0 side:

C0

a face normal
vector for the C0 cell

C1

Thread *tf, *t0;

face_t f;

cell_t c0;

real totalV=0.;

tf = Lookup_Thread(domain, ID);

t0 = THREAD_T0(tf);

begin_f_loop(f, tf)

{ c0=F_C0(f, tf);

totalV += C_VOLUME(c0, t0);

}

end_f_loop(f, tf)

/*get the c0 thread */

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-21
April 30, 2009

Inventory #002686

Top-Level UDF Macros

• User’s own codes must use the top-level UDF macros in order to
communicate with the FLUENT solver

� Profiles : DEFINE_PROFILE

� Source terms : DEFINE_SOURCE
� Properties : DEFINE_PROPERTY
� User-defined Scalars : DEFINE_UNSTEADY

DEFINE_FLUX

DEFINE_DIFFUSIVITY

� Initialization : DEFINE_INIT
� Global Functions : DEFINE_ADJUST

DEFINE_ON_DEMAND

DEFINE_RW_FILE

� Wall-heat-flux : DEFINE_HEAT_FLUX
� Model-Specific Functions : DEFINE_DPM_…

DEFINE_SR_RATE

DEFINE_VR_RATE

…

Refer to the UDF Manual for a complete list

Introduction to UDF and FLUENT Data Structure

ANSYS, Inc. Proprietary

© 2009 ANSYS, Inc. All rights reserved. 1-22
April 30, 2009

Inventory #002686

The Header Files

� The udf-macros are defined in the ‘udf.h’ file

� udf.h is a fluent header file in the {Fluent installed

directory}/Fluent12.y/src/ directory

� udf.h must be included at the top in each and every udf file
� A file may contain more than one UDF
� User can use multiple files for UDF

� Any UDF you might write must use one of the ‘DEFINE_…’ macros from

this udf.h file

� There are many more header files stored in the same directory can be
browsed by users

#define DEFINE_PROFILE(name, t, i) void name(Thread *t, int i)

#define DEFINE_PROPERTY(name,c,t) real name(cell_t c, Thread *t)

#define DEFINE_SOURCE(name, c, t, dS, i) \

real name(cell_t c, Thread *t, real dS[], int i)

#define DEFINE_INIT(name, domain) void name(Domain *domain)

#define DEFINE_ADJUST(name, domain) void name(Domain *domain)

#define DEFINE_DIFFUSIVITY(name, c, t, i) \

real name(cell_t c, Thread *t, int i)

