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Finite difference method 

error and convergence
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Representative values: xj, uj

Obtain the change of the 

solution from the derivatives:
uj+1-uj-1

The approximation error 

reduces with reduced interval
size.

One scheme is better than the

other...
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Taylor polynomial of the solution from

point j to point j+1:

From the Taylor polynomial we can 

express a differencing scheme of 
first order accuracy:

This is an integration scheme of first

order accuracy. 

Forward Differencing Scheme (FDS)
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we can integral step by step, by assuming:

When the differencial equation is given in 

the explicit form:

Note that, the error term is one 

degree of magnitude higher.
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Another first order scheme:

When F is evaluated in j+1, we 

may end up with a more 
complicated expression for uj+1. 
This kind of discretization is 

called implicit:

Backward Differencing Scheme (BDS)
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from the backward Euler scheme we get:

Now, we assume the differential equation 

is given in the following form:

0
11

1
≅







 −
++

+

jj

jj
x,u,

x

uu
F

∆
( ) 0111 =+++ jjj x,u,'uF

unknowns

Different behavior…
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analitical solutions

Physical processes lead to a temporal equilibrium in many cases. 

Explicit Euler method:

Implicit Euler method:
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Central Differencing Scheme (CDS)

Extensively used in CFD for spatial discretization.
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An implicit differencing scheme with second 
order accuracy

Can be used for discretizing the boundary layer equation.
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An explicit integrating scheme with second order accuracy

It is often used for integrating the Navier-Stoket equations.

Adams-Basforth scheme

A 2 step 2nd order explicit Runge-Kutta 

type scheme
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1st step:

2nd step: Use CDS scheme around point j:

Use the Euler method for geting into point j:

Evaluate the derivative in point j:

Can be used for calculating compressible flows (eg. Lax-Wendroff method).

Finite volume method
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U: volume intensity of an arbitrary conserved 

quantity.

ρ=Φ /U

The conserved quantity per init mass of

fluid:

vF
C

rr
Φρ= Φ∇Γ−=DF

r

Convective and conductive fluxes:

Discrete solution

Fluxes are evaluated on the element faces. 

Finite volume method is conservative: discretization errors do not produce or 
destroy conserved physical properties. Conservation equations are exactly 
fulfilled on the computational domain.

Discretization of the Navier-Stokes equation 
is rather difficult on this way…
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Curvilinear, stretched Unstructured, hybridIn some cases more 

complex meshes 
are necessary for 
efficient solution

Spatial derivatives in finite volume 

methods
The generic transport equation in integral form:

In which Φ is the mass concentration of a conserved quantity (eg. in kg/kg).
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Spatial derivatives are always in div(...), grad(...) or div(grad(...)) forms. 

We only need to look for the discrete approximations of these operators,
which is done - in the case of finite volume method - on the basis of surface and 
volume integrals along with some spatial interpolations.  

P
Cell centroid.

Here we store φP.

Face centroids. 

Defined by surface vectors.

The numerical mesh around the cell having its center in point P:

Anything can be interpolated

from cells to surfaces...
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From the volume integral of the divergence operator we can obtain the cell 

average of the divergence term.
The Gauss-Ostrogradskij theorem for a vector quantity u:

For simplicity, we denote components of u vector by ui. The cell-average of 

the divergence operator is now:

in which Ak are the faces of the cell. The surface integral for each face is a 

scalar product:

Approximation of the divergence 

operator

in which ui is one component of u
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A direct consequence of the Gauss-Ostrogradskij theorem:

The i-th component of the approximate gradient can be evaluated 

according to the following expression:

Ai is the i-th component of the surface vector in Descartes system.

Gradient
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When calculating the discrete approximation of the operator the gradient must

be interpolated onto the face centroids. This is denoted by < > in the following
formula:

The approximate Laplacian

For most field variables - excepting for the pressure field – the face normal 

component of the gradient vector can be calculated on a more simple way:
from φ values stored in the centers of the adjacent cells.
In this case the discrete form of the Laplacian operator can be calculated 

as a linear combination of φP and the neighboring φ values:
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In which AP are constant values, depending only on the mesh parameters.


