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Finite difference method 

error and convergence

The approximation error 

U(xj+1)-uj+1 reduces with reduced 
intervalsize.

Some schemes are better than 

the other...
xj xj+1/2 xj+1 x

u

U(xj)=uj

U(x)

U(xj+1)

uj+1 (A eset)

uj+1 (B eset)

uj+1 (C eset)

We shall calculate the change 

of exact solution U(x) by 
integrating the derivative 
on section xj+1-xj=∆x :

A) from the initial derivative,
B) from the terminal derivative,
C) from midpoint derivative.

The values of the approximate 
solution are: uj, uj+1…
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Taylor polynomial of the exact solution 

from point j to point j+1:

From the Taylor polynomial we can 

express a differencing scheme of 
first order accuracy:

This is an integration scheme of first

order accuracy. 

Forward Differencing Scheme (FDS)
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we can integral step by step, by assuming:

When the differencial equation is given in 

the explicit form:

Note that, the error term is one 

degree of magnitude higher.
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Another first order scheme:

When F is evaluated in j+1, we 

may end up with a more 
complicated expression for uj+1. 
This kind of discretization is 

called implicit:

Backward Differencing Scheme (BDS), 

implicit discretisation method
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from the backward Euler scheme we get:

Now, we assume the differential equation 

is given in the following form:
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unknown

Different behavior…
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analitical solutions

Physical processes lead to a temporal equilibrium in many cases. 

Explicit Euler method:

Implicit Euler method:
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Central Differencing Scheme (CDS)

Extensively used in CFD for spatial discretization.
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An implicit differencing scheme with second 
order accuracy

Can be used for discretizing the boundary layer equation.
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An explicit integrating scheme with second order accuracy

It is often used for integrating the Navier-Stoket equations.

Adams-Basforth scheme

A 2 step 2nd order explicit Runge-Kutta 

type scheme
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j-1
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1st step:

2nd step: Use CDS scheme around point j:

Using the Euler method we can calculate approximate values: 

Can be used for calculating compressible flows (eg. Lax-Wendroff method).
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Discretization of the Navier-Stokes equation 
is rather difficult on this way…
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Curvilinear, stretched Unstructured, hybridIn some cases more 

complex meshes 
are necessary for 
efficient solution

Finite volume method
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U: volume intensity of an arbitrary conserved 

quantity.

ρ=Φ /U

The conserved quantity per init mass of

fluid:

vF
C

rr
Φρ= Φ∇Γ−=DF

r

Convective and conductive fluxes:

Discrete solution

Fluxes are evaluated on the element faces. 

Finite volume method is conservative: discretization errors do not produce or 
destroy conserved physical properties. Conservation equations are exactly 
fulfilled on the computational domain.

Spatial derivatives in finite volume 

methods
The generic transport equation in integral form:

In which Φ is the mass concentration of a conserved quantity (eg. in kg/kg).
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Spatial derivatives are always in div(...), grad(...) or div(grad(...)) forms. 

We only need to look for the discrete approximations of these operators,
which is done - in the case of finite volume method - on the basis of surface and 
volume integrals along with some spatial interpolations.  

P

Cell centroid.

Here we store φP.Faces are represented by 

vector coordinates dAi ,
i=1,2,3.

The numerical mesh around the cell having its center in point P:

Face centroid. 

We need to 
interpolate here 
from the centers. 
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From the volume integral of the divergence operator we can obtain the cell 

average of the divergence term.
The Gauss-Ostrogradskij theorem for a vector quantity u:

The discrete representation of the divergence term is defined as a volume average 

over element P:

ul,i are Descartes coordinates of vector u being interpolated to face centroids.

This expression is a linear combination of u values stored in P and in neighboring 
cells. 

Approximation of the divergence 

operator
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A direct consequence of the Gauss-Ostrogradskij theorem:

The i-th component of the approximate gradient can be evaluated 

according to the following expression:

Al,i is the i-th component of the surface vector in Descartes system.

Gradient
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The same composition can be applied for discrete operators:

The approximate Laplacian

For most field variables - excepting for the pressure field – the face normal 

component of the gradient vector can be calculated on a more simple way:
from φ values stored in the centers of the adjacent cells.
In this case the discrete form of the Laplacian operator can be calculated 

as a linear combination of φP and the neighboring φ values:

In which aP and al are constant values, depending only on the mesh parameters.
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