M13

 

lapdiffúzor jellemzőinek meghatározása

 

 

1. A mérés célja

 

Az áramlásban (ha az erőtér potenciáljának változástól eltekintünk, súrlódásmentes és stacioner esetben, összenyomhatatlan közeg esetén) a Bernoulli-egyenlet szerint:

Az egyenlet első tagját statikus nyomásnak, a másodikat dinamikus nyomásnak nevezzük. Tehát a Bernoulli-egyenlet azt sugallja, hogy egy csővezetékben áramló közeg dinamikus nyomását növelhetjük a statikus nyomás csökkentésével, ill. a dinamikus nyomás nullára csökkentésével elérhetünk egy maximális nyomást. Ez a torlóponti nyomás, vagy torló nyomás.

 

A valóságos áramlásban veszteségek lépnek fel. Amíg a folyadék gyorsítását, tehát a sebesség növelését a nyomás rovására konfúzorban általában kis veszteséggel meg lehet valósítani, a sebesség csökkentését viszonylag nagy veszteségek árán lehet elérni. Sok kutatás folyt és folyik ma is annak érdekében, hogy az ekkor fellépő veszteségeket minél kisebbre szorítsák le. Csővezetékek esetében az egyik legegyszerűbb szerkezet a diffúzor, amellyel áramlás irányában a sebességet csökkenteni, a nyomást növelni lehet.

 

A diffúzorban a folyadékrészecskék az A1 csőkeresztmetszetet az A2 keresztmetszettel összekötő bővülő csőszakaszon (=diffúzoron) keresztül a nagyobb keresztmetszetben érvényes kisebb áramlási sebességgel és nagyobb statikus nyomással jellemzett A2 keresztmetszet felé, tehát nyomásnövekedés irányában áramolnak. Az ehhez szükséges munkát a mozgási energiájuk csökkenése fedezi. A Bernoulli-egyenlet szerint ez a csökkenés éppen egyenlő a nyomás növekedésével. A valóságban a mozgási energia egy része a veszteségek fedezésére fordítódik. A súrlódás különösen a csőfal mentén érezteti hatását. az itt haladó és a fali csúsztató feszültség miatt lelassuló részecskék mozgási energiája - főleg hirtelen bővülő, nagy nyílásszögű diffúzornál - kevés annak a munkának a fedezésére, amelyet a faltól távol áramló közeg lassulásból adódó nyomásnövekedése igényelne. Ezért a fal mellett áramló részecskék lelassulnak, megállnak, sőt vissza is áramlanak. Ekkor a fal mellett levált zóna alakul ki. A beljebb áramló rétegek pedig nem követik tovább a csőfal táguló irányát, attól elválnak. Ezt a jelenséget nevezik határréteg leválásnak, az általa okozott nyomásveszteséget leválási veszteségnek.

A leválási veszteség főként arra vezethető vissza, hogy a valóságos áramlási keresztmetszet a leválás következtében kevésbé nő, mint ami a diffúzor geometriájából adódna. Rohamosan növekvő diffózorok esetén főként emiatt marad el a nyomás növekedése a Bernoulli-egyenletből számolttól.

 

Áramlás irányában bővülő keresztmetszetet el tudunk érni úgy is, hogy a közeget két körlap által alkotott radiális csatornába vezetjük. Ez a szerkezet a lapdiffúzor. Szellőztető rendszerekben alkalmazott légbefúvó idomok kialakításának ez az egyik módja.

 

A mérés célja:

A laboratóriumi mérések során az 1.ábrán látható a cső végére szerelt lapdiffúzor hatásfokát kell meghatározni. A kifúvó elem síkja és a DL átmérőjű lap közötti x távolság alapvetően befolyásolja a kilépő hengerpalást A2 keresztmetszetet. A mérés során az x távolság függvényében kell kimérni a diffúzor hatásfok változását, megkeresni a hatásfok maximumát.

1.ábra: Lapdiffúzor mérési elrendezés

2. A mérőberendezés leírása

 


A lapdiffúzor egy radiális ventilátor nyomóoldalára csatlakozó csővezeték végére van szerelve. A radiális ventilátor szívóoldalán beszívó mérőperem található, amely a térfogatáram mérésére szolgál. Ebből tudjuk a keresztmetszetek ismeretében a v1 ill. v2 áramlási sebességeket meghatározni.

 

  

 

  

3. A mérés elve

 

Az előbbi ábrákon látható diffúzorban az áramlás az A1 és A2 keresztmetszetek között játszódik le. Az A1 keresztmetszet a cső kör keresztmetszete, az A2 a DL átmérővel és az x távolsággal jellemezhető hengerpalást felülete. Akkor működik diffúzorként a berendezés, ha A1 < A2 . Ezt az xmin (A1=A2 esetén számolható) távolság kiszámítása után állítjuk be a mérés elején. A mérés során xmin egész mm-re felkerekített értékétől indulva az x távolságot Dx=1mm-ként növelve 10 különböző A2 keresztmetszetű lapdiffúzor beállítást kell vizsgálni.

FONTOS! A lap x távolságát Dx=1mm-ként (vagy maximum 1.5mm-ként) változtassuk (növeljük xmin-től kezdve) , ennél nagyobb lépésköz esetén a maximális hatásfok helye nehezen határozható meg a mért adatokból!

 

Az A1 és A2 keresztmetszetekben általában sem a nyomás, sem a sebesség nem állandó (sem térben sem időben). A nyomás időbeli ingadozásta miatt a műszerek leolvasásánál időbeni átlagolást kell végeznünk. A EMB-001 típ. digitális nyomásmérő kézi eszközt használva az átlagolás időtartama három (F/M/S) fokozatban állítható (lásd nyomásmérő kezelési útmutató).

 

A következő elvi meggondolásokban így mindig a nyomások és a sebességek átlagai szerepelnek.

Hogyan határozzuk meg diffúzor jóságát?

Definiálunk egy diffúzor hatásfokot, amely a megvalósult nyomásnövekedést, , viszonyítja a Bernoulli-egyenletből ideális esetben létrejöhető nyomásnövekedéshez, . Ezt a hányadost nevezzük diffúzor hatásfoknak.

Felírva a Bernoulli-egyenletet az "1" és a "2" keresztmetszetek között kapjuk, hogy:

                   .

Így tehát a diffúzor hatásfok:

                  

 

A mérések során a fenti képletekben szereplő mennyiségeket kell mérni különböző x  távolságra beállított diffúzorlap esetén, majd a  hatásfokot kiszámítani, és az x távolság függvényében ábrázolni, a mért eredményeket kiértékelni.

 

4. A mérés lefolytatása

Az áramlási sebességek meghatározása térfogatáram méréssel

A  és  sebességeket a mérőperem segítségével mért nyomásból határozhatjuk meg minden egyes diffúzor állásnál, vagyis minden "x" távolságnál.

A mérések során digitális nyomásmérő műszert célszerű használni. A térfogatáram meghatározásához a beszívó mérőperemnél lévő nyomáskivezetésen az atmoszférához képest mérhető nyomáskülönbséget mérve a értékből kiszámítható a berendezésen átáramló térfogatáram:

ahol "d" a mérőperem belső átmérője. Az  beszívó mérőperem esetén. (e=1)

A diffúzornál a belépő, „1” keresztmetszebeni sebességet a

 

képlettel számíthatjuk, ahol D a ventilátor nyomóoldalán lévő csőszakasz belső átmérője. A lapdiffúzorból kilépő levegő átlagsebessége pedig:

.

 

Diffúzor valós nyomásváltozás mérése

Az A1 keresztmetszetnél elhelyezett oldalfali statikus nyomás mérőpontban lehet a "p1" nyomást mérni, a "p2" nyomás pedig a környezeti p0 nyomás, hiszen a lapdiffúzor kilépő keresztmetszete a szabadba nyílik, a közeg p0 nyomásra áramlik ki. Elegendő tehát így p1 nyomást a légköri nyomáshoz viszonyítva mérnünk, ekkor mindjárt a valóságos nyomásnövekedést mérjük.

 

Diffúzor oldalfali nyomáseloszlás mérése

A diffúzorban végbemenő nyomásváltozás mérésére a lap egyik sugara mentén több nyomáskivezetés áll rendelkezésre. A különböző beállított x távolságok esetén, a különböző geometriájú diffúzorok áramképét részletesebben is meg kell megvizsgálni. Erre szolgál a diffúzor oldalán kiépített több statikus nyomásmérő hely. Minden beállításban mérni kell és ábrázolni a nyomáseloszlást, amiből meg lehet keresni a leválás helyét, nagyságát, egyik vagy másik oldali elhelyezkedését, stb.

 

Szimmetrikus beállítást feltételezve a lap kerülete mentén egy adott sugáron, az áramlás elvileg nem változik, egy tipikusnak vett állapot esetén ezt méréssel is igazolni kell. Erre a célra a kilépő keresztmetszetben a kerület mentén a kilépő sebességet Prandtl-csővel végig kell mérni 15-300-fokonként. Ha a kilépő sebesség a kerület mentén jelentősen változik, akkor a diffúzor geometriai beállítását ellenőrizni kell, mivel ebben az esetben a diffúzorlapokon egy sugár mentén mért statikus nyomásértékek nem jellemzik a diffúzorlap közelében lévő áramlást. (Az áramkép kerület mentén is változik.)

 

A mérések során a [2] útmutató 4. fejezetében ismertetett nyomásmérőt célszerű használni. A számítások során  a levegő sűrűsége, r a mindenkori légállapotból számítható:

ahol  a mindenkori barometrikus nyomás,  és T az aktuális levegő hőmérséklet K-ben mérve.

 

5. A mérés kiértékelése és ellenőrzése irodalmi adatokkal:

A kiértékelés során a diffúzor geometriai adatait pontosan rögzíteni kell. A mért sebesség és nyomásértékeket táblázatosan és diagramok formájában kell elkészíteni

A mérés kiértékelésekor meg kell határozni a diffúzor hatásfokát a lapok közötti résméret függvényében, a kiáramlás egyenletességét a szög függvényében egy adott diffúzorbeállításnál. Továbbá fel kell rajzolni a nyomás sugár menti eloszlását a lapon és a diffúzor-elemen minden beállításra. Az utóbbi felhasználásával a diffúzor lapjai közötti áramképre lehet következtetni.

A kiértékelésre és jegyzőkönyv egyéb formai követelményeire vonatkozó útmutatásokat kaphatunk [1, 2]-ben.

6. Hibaszámítás:

A mérés hibaszámítását a diffúzor hatásfokra kell elvégezni az alábbi módon:

 

A diffúzor hatásfok kifejezése:

            

Az abszolút hiba számítása:

           

A relatív hiba:

           

ahol az Xi mért mennyiségek és a hozzájuk kapcsolódó mérési hibák:

X1=Dpvalós,      illetve a nyomásmérés. hibája                         dDpvalós=2Pa

X2=DpMP,        illetve a mérőperemes nyomásmérés hibája               dDpMP=2Pa

X3=D,             illetve az átmérőmérés hibája                                    dD=1mm

X4=DL,            illetve az átmérőmérés hibája                                    dDL=1mm

X5=d,              illetve az átmérőmérés hibája (mérőperem)               dd=1mm

X6=x,              illetve a hosszmérés hibája                                        dx=1mm

 

7. Diagramok:

·         A diffúzor hatásfokot és veszteségtényezőt az x távolság függvényében (az abszolút és relatív hiba értékét is feltüntetve).

·         A kiáramlási sebesség a szög függvényében.

·         A nyomáseloszlásokat a sugár mentén ábrázolva a lapon és a diffúzorelemen.

 

A mérés során nem szabad megfeledkezni

-A mérőberendezés bekapcsolása előtt, illetve általában a mérőberendezés üzeme során mindig meg kell győződni a balesetmentes használat feltételeinek teljesüléséről. A bekapcsolásról, illetve a mérés közben végrehajtott változtatásokról a berendezés környezetében dolgozókat figyelmeztetni kell.

- Minden mérési alkalommal a légköri nyomás és teremhőmérséklet feljegyzéséről!

- A felhasznált mérőműszerekről leolvasott értékek mértékegységének és a rájuk vonatkozó egyéb tényezők (Például a ferdecsöves mikromanométer mérőszál ferdítési tényezője.) feljegyezéséről.

- A felhasznált mérőműszerek típusának, gyártási számának és a benne lévő mérőfolyadék sűrűségének  feljegyezéséről!

- A mérőműszerről leolvasott mennyiségek és a további számításoknál felhasznált mennyiségek mértékegységének egyeztetéséről.

- Az "U-csöves" nyomásmérő elvén működő mikromanométerek csak megfelelően kivízszintezve használhatók.

- A nyomásmérő bekötésénél figyelmesen kell eljárni a csatlakozók "+" illetve "-" ágának és a méréshatár kiválasztásánál. Általában mindegyik manométer típusnál, de kiemelten a ferdecsöves manométernél, figyelni kell arra, hogy a nyomásmérő csatlakozó csonkjaira a gumi csövet óvatosan, "ráközelítve", a mérőfolyadék szál viselkedését figyelemmel kísérve kell felhelyezni. Ha bekötőcsövek tömör rögzítése előtt a mérőfolyadék szál kitérése megközelíti a maximális kitérést, úgy ha lehet méréshatárt kell változtatni a műszeren, ha ez nem segít, akkor nagyobb nyomások mérésére alkalmas műszert kell választani a méréshez. Ellenkező esetben a mérőfolyadék egy része a bekötőcsőbe áramlik meghamisítva, esetleg teljesen lehetetlenné téve a mérést

- A nyomásközlő gumi, vagy szilikon csöveket mérés előtt, esetleg közben is célszerű ellenőrizni, nehogy repedés, szakadás legyen rajtuk, mert lyukas mérőcső esetén az összes addigi mérési eredmény kárba vész. Az ellenőrzést szemrevételezéssel, vagy nyomástartási próbával végezhetjük el. Kritikus pontok a műszerekre ill. a nyomáskivezetésekre történő csatlakoztatás helyei.

 

 

Irodalom

 

[1] Lajos Tamás: Az áramlástan alapjai, Műegyetemi Kiadó, Budapest 2005

[2] Áramlástan Tanszék honlapja: www.ara.bme.hu