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2.1. Irregular mathematic introduction: In an engineering approach, mathematics is a method by which we 
can gain knowledge about phenomena without having to perform the phenomenon itself in physical reality. 
Furthermore, with numbers we can give the exact extent of things. Instead of small and large markers, we can 
prescribe the size of the variables just needed for the intended processes. To understand this, let is take a simple 
example well known in mechanical engineering practice. Our task is to make a gas-filled, 2 m3, cylindrical, 1 m 
diameter tank with an internal gauge-pressure of 20 bar. In a conventional approach, the most important property 
required to ensure stability is the tank wall thickness. If the wall thickness were to be determined by trial, without 
preliminary calculations, the task could only be solved by dangerous, expensive and time-consuming work. In 
contrast, the minimum wall thickness formula derived by mathematical modelling of the problem prepares the 
concrete practical implementation under safe, cheap, and fast conditions. Without the derivation from statics, 
well known to all mechanical engineers, in this case using only the end result, 
 

𝛿 =
∆𝑝𝐷

2𝜎ℎ
=

20 ∙ 105 ∙ 1

2 ∙ 200 ∙ 106
= 0,005 [𝑚] 

 
At a maximum allowable mechanical stress of 200 MPa, without safety factor and corrosion reserve, the 
minimum tank wall thickness required to ensure stability is 5 mm. To determine the required wall thickness to 
solve the static problem, it took less time to understand and apply the mathematical model, but presumably even 
to guess it, than to perform a series of stability tests with containers with different wall thicknesses under real 
conditions. 

It is important to note that in the mathematical modelling of a phenomenon, the analysis of the solution may 
reveal new details about the phenomenon that are not detected by the superficial experimental study. Thus, it 
can be stated, that mathematical modelling serves not only engineering design but also scientific understand. 
Countless examples can be listed in physics (particle physics, astronomy, …), when a new recognition was born 
based on a mathematical model and the experimental validation of the theoretical discovery took place much 
later. A detailed examination of the solutions of the mathematical model is also useful during learning. It 
systematizes our knowledge, draws attention to hidden details and, together with the initial conditions, also 
shows the limits of application. Thus, the examination of solutions is also used in the presentation of acoustic 
phenomena in the chapters of this lecture notes. 
 
Steps of mathematic modelling: Selection of physical variables describing the phenomenon, selection of 
physical principles related to the phenomenon, writing of mathematical equations describing the physical 
principles and making connections between the variables, simplification, solution and control. In the next section, 
we will go through these steps in detail to model sound phenomena. The starting point is helped by the flow 
nature of airborne sounds, i.e. the sound is a specific compressible fluid flow, so the variables and basic 
equations used in fluid mechanics can be applied to create the mathematical model air borne sound acoustics. 
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Variables describing the sound space: 

- Velocity vector, 𝑣 [m/s] (distance vector per unit time), (the quantity of the vector is indicated by underlining 

the letter symbol of the variable) 

- Pressure, p [Pa] (normal force per unit area) 

- Density,  [kg/m3] (mass per unit volume of a material) 

- Temperature, T [K] (degree of warming of materials, quantity proportional to the average kinetic energy 
resulting from the random heat motion of the material particles) 
 
Physical principles related to sound phenomena: 

- Material or mass conservation (no material or mass is formed or lost during flow or sound occurrence) 

- Momentum balance (the change of the momentum of a fluid particle per unit time is equal to the resultant 
forces, acting on it) 

- Energy balance (the change of the energy of a medium per unit time is equal to the sum of the work (power) 
per unit time done by the resultant forces and the supplied heat per unit time) 

- Laws on physical properties of materials (principle determining the behaviour of the medium in relation to the 
phenomenon, law of matter, e.g. the ideal gas law, Hooke's law, or in another fields of physics, e.g. Ohm's law) 
 
Basic equations to describe sound phenomena: 

- Continuity equation (to express the principle of material or mass conservation) 

- Equation of motion (to express the momentum balance) 

- Energy equation (to express energy balance) 

- Equation of state for ideal gases (in most cases the noise transmitted to the listener by air, on the other hand 
the sound are formed in a gas, can be considered ideal from a thermodynamic point of view, so in our case the 
law of material is the equation of state for ideal gas) 
 
Resolution of acoustic variables into equilibrium and time-varying parts: It is an empirical observation that 
variables describing sound field can be decomposed into time-constant, large equilibrium values and time-
varying, small values (see the following figure). We can also say that acoustics is the science of very small 
changes in very large quantities. We will experience several advantages of the resolution in later derivations 
(e.g.: the temporal derivatives of the equilibrium terms will be eliminated, the quadratic expressions of the time-
varying terms or their products will be negligible). 
 
 

t 

p 

p 0
 

p’
 

 

The resolution of pressure, describing sound field, into equilibrium and time-varying parts 
 

𝑝 = 𝑝0 + 𝑝′            𝑣 = 𝑣0 + 𝑣′            𝑇 = 𝑇0 + 𝑇′            𝜌 = 𝜌0 + 𝜌′ 
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For sound field variables, the left side of the expressions denotes the total quantity without the index, the index 
“0” denotes the time-constant, equilibrium term, and the dash (comma) denotes the time-varying, fluctuating part 

(not the local derivative!). Due to their prominent importance in acoustics, the variables p' and 𝑣′ were given 

separate names, as sound pressure (p') and particle velocity (𝑣′). 
 
Simplification conditions: 

- The medium giving space for sound propagation is a homogeneous, frictionless, continuum (homogeneous: 
material properties are independent of location, frictionless: parallel liquid layers can be moved relative to each 
other without resistance, continuum: the material structure of the medium is continuous and non-atomic or 
molecular). 

- The elemental thermodynamic state changes (processes) in the medium during sound propagation will take 
place without heat exchange (adiabatic) and without loss (dissipation), i.e. in an isentropic way (p/ρκ= const.). 

- Sound propagation occurs in a medium in static rest (v0= 0 m/s) 

- Except particle velocity, for all of the acoustic variables it is true that the ratio of time fluctuation to equilibrium 
value is much less than one, 
 

𝑝′ 𝑝0⁄ ≪ 1           𝑇′ 𝑇0⁄ ≪ 1           𝜌′ 𝜌0⁄ ≪ 1 

 
2.2. Direct algebraic relationship of variables describing sound field: To establish our acoustic calculations, 
the first step is to examine the relationship between acoustic variables, without space and time dependence, 
using algebraic equations. To do this, suppose a very simple case of sound propagation (see the following 
figure). The middle of a very long tube, filled with air is blocked by a perfectly sealed, frictionless movable piston. 
At time t0, the piston starts to move at a speed v' from left to right. As a result, mechanical waves start in the air 
from both sides of the piston. Now let limit our studies to the wave component moving to the right. Thanks to the 
simple task selection, a one-dimensional plane wave propagation parallel to the tube axis is created. When 
solving the problem, by choosing a coordinate system moving together with the wave front, the phenomenon 
becomes constant in time, and the space dependence is also eliminated, because there are only two 
(undisturbed and disturbed) sound field variables at the two side of the wave front. Our conservation and balance 
equations are written on a control surface, with elementary thickness, including the wave front entirety, moving 
at the speed of sound “a” and permeable to the medium (see the following figure). 
 
Continuity equation: In the case of a time-steady channel flow, the mass flow entering the front face of the 
control surface is equal to the mass flow exiting the back face, 

 

𝑞𝑚 𝑖𝑛 = 𝑞𝑚 𝑜𝑢𝑡 
 
The mass flow is the magnitude of the mass flowing over a given surface (A) per unit time, generally the surface 

integral of the product of the density (ρ) and velocity (𝑣). The operation between velocity and the surface element 

vector (𝑑𝐴) is scalar (dot) product, 

 

𝑞𝑚 = ∫ 𝜌𝑣 𝑑𝐴
𝐴

 

 
In the inlet and outlet cross sections, the surface element vector and the velocity vector are parallel to each other 
at each point, and in each cross section the magnitude of the density and velocities are constant, so that the 
mass flows can be determined by simple products, 

 

𝜌0𝐴𝑎 = (𝜌0 + 𝜌′)𝐴(𝑎 − 𝑣′) 
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Simplified by the cross-section and after opening the bracket, 
 

𝜌0𝑎 = 𝜌0𝑎 + 𝜌′𝑎 − 𝜌0𝑣′ − 𝜌′𝑣′ 
 
After the simplification, neglecting the small term in the second order (ρ’v’), the algebraic shape of the acoustic 
continuity equation expressed on the particle velocity, 
 

𝑣′ =
𝑎

𝜌0
𝜌′ 
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Wave front Moving control surface 

v0= 0 m/s 

A [m2] duct cross-sectional area 

 

Examination of a one-dimensional disturbance wave in a coordinate system moving with the wave front 
 
Equation of motion: The change in the momentum of a fluid particle per unit time is equal to the resultant forces 
acting on the fluid particle (Newton's second law). In the case of a steady flow in time, the change in momentum 
is the difference between the momentum flowrate entering and leaving the front and back of the control surface. 
The change in the momentum flowrate is caused by the result of the pressure forces acting on the control 
surface, 

 

𝐼𝑖̇𝑛 − 𝐼𝑜̇𝑢𝑡 = 𝐹𝑝 𝑜𝑢𝑡 − 𝐹𝑝 𝑖𝑛 

 
If the left side is positive, the momentum flowrate within the control surface decreases, the magnitude of which 
is determined by the difference between the pressure forces acting on the inlet and outlet side. The momentum 
flowrate vector is the momentum passing over a given surface per unit time, the product of the mass flow and 
the velocity (together with the fluid, not only the mass, but also the momentum of the fluid passing through the 
control surface), in the general case, 
 

𝐼̇ = ∫ 𝑣𝜌𝑣 𝑑𝐴
𝐴

 

 

Where the product 𝜌𝑣𝑑𝐴 is the elementary mass flowrate. Furthermore, the pressure force, is the surface 

integral of the pressure (p), 
 

𝐹  𝑝 = − ∫ 𝑝 𝑑𝐴
𝐴

 

 
With constant density and pressure and when the velocity of the flow is parallel to the surface element vectors, 
the integral expressions of the momentum flowrate and the pressure forces are simplified into products, 
 

𝜌0𝐴𝑎2 − 𝜌0𝐴𝑎(𝑎 − 𝑣′) = (𝑝0 + 𝑝′)𝐴 − 𝑝0𝐴 
 
On the left side of the equation, in the second term, the term inside the bracket is the mass flowrate out of the 
control surface (qmout), which is replaced by the formally simpler inlet mass flowrate (qmin), based on the continuity 
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equation. After performing the simplifications, the algebraic form of the acoustic equation of motion expressed 
in terms of sound pressure, 

 

𝑝′ = 𝜌0𝑎𝑣′ 
 
Energy equation: The change in the energy of a fluid part per unit time is equal to the work done by the forces 
acting on the fluid part per unit time. Due to the adiabatic change of state and the frictionless condition, the heat 
supplied to the fluid is zero. In a time steady flow, the energy change is the difference between the energy 
flowrates exciting the back and entering the front of the control surface. The change in energy flowrates is the 
result of the work performed per unit time (power) by the pressure forces acting on the control surface, 
 

𝐸̇𝑜𝑢𝑡 − 𝐸̇𝑖𝑛 = 𝑊̇𝐹𝑝 𝑖𝑛 − 𝑊̇𝐹𝑝 𝑜𝑢𝑡 

 
If the left side is positive, the energy flow within the control surface increases, the magnitude of which is 
determined by the difference of the work done per unit time by the pressure forces on the upstream and 
downstream side. The energy (E) of the fluid part is the sum of the kinetic, potential and internal energies (Ek, 
Ep and Ei). In a homogeneous air space, the external forces acting on the fluid particles and the pressure forces 
are balanced. In other words, the air particles float in their own medium, so to move them, do not have to work 
against the external force field, and there is no change in potential energy. Energy flowrate is the magnitude of 
the energy passing through a given surface per unit time, the product of the mass flowrate and the energy per 
unit mass (e). Not only the mass of the fluid, but also the energy of it passes through the surface. In the general 
case, the sum of the kinetic and internal energy flowrate, 
 

𝐸̇ = ∫ 𝑒 𝜌𝑣 𝑑𝐴
𝐴

= ∫ (𝑒𝑘 + 𝑒𝑖)𝜌𝑣 𝑑𝐴
𝐴

= ∫ (
𝑣2

2
+ 𝑐𝑣𝑇) 𝜌𝑣 𝑑𝐴

𝐴

 

 

Where the 𝜌𝑣𝑑𝐴 product is the elementary mass flowrate, ek is the kinetic energy and ei is the internal energy 

per unit mass, cv is the specific heat at constant volume and T is the absolute temperature of the medium. Power 
is the work done per unit time, 
 

𝑊̇ =
𝑑𝑊

𝑑𝑡
=

𝑑(𝐹𝑑𝑠)

𝑑𝑡
= 𝐹

𝑑𝑠

𝑑𝑡
= 𝐹 𝑣 

 
Work done by the pressure force per unit time on the fluid particles passing through an arbitrary A surface, 
 

𝑊̇𝐹𝑝 =
𝑑𝑊𝐹𝑝

𝑑𝑡
= ∫ 𝑣 𝑝𝑑𝐴

𝐴

 

 

Where the 𝑝𝑑𝐴 product is the elementary pressure force (𝑑𝐹  𝑝). When the direction of the flow parallel to 

surface element vectors and with average velocity magnitude, temperature, density and pressure, the energy 
flowrates and power of the pressure forces, 
 

(𝑎 − 𝑣′)2

2
𝜌0𝐴𝑎 + (𝑇0 + 𝑇′)𝑐𝑉𝜌0𝐴𝑎 −

𝑎2

2
𝜌0𝐴𝑎 − 𝑇0𝑐𝑉𝜌0𝐴𝑎 = 𝑎𝐴𝑝0 − (𝑎 − 𝑣′)𝐴(𝑝0 + 𝑝′) 

 
Dividing both sides of the equation by the mass flowrate, after performing the simplifications and neglecting the 
small terms in the second order 
 

−𝑎𝑣′ + 𝑇′𝑐𝑉 =
𝑝0

𝜌0
−

𝑝0 + 𝑝′

𝜌0 + 𝜌′
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Bringing the right side to the same denominator and introducing the simplification ρ0+ρ’≈ρ0 in the denominator, 
 

−𝑎𝑣′ + 𝑇′𝑐𝑉 =
𝑝0𝜌′

𝜌0
2 −

𝑝′

𝜌0
 

 
In the obtained equation, based on the linear acoustic motion equation, the two terms at the sides of the equation 
are eliminated, the algebraic shape of the linear acoustic energy equation expressed to the temperature 
fluctuation variable, 

 

𝑇′ =
𝑝0

𝑐𝑉𝜌0
2 𝜌′ 

 
State equation for ideal gases: 

𝑝

𝜌
= 𝑅𝑇 

 
Equality is also true for the elementary change of the left and right sides of the term, 
 

𝑑 (
𝑝

𝜌
) = 𝑑(𝑅𝑇) 

 
Rewritten for elementary changes in members, 
 

𝑑𝑝

𝜌
−

𝑝

𝜌2
𝑑𝜌 = 𝑅𝑑𝑇 

 
Based on the empirical finding, the acoustics is the “mechanics of the small changes of large quantities” we 
approximate that the elementary quantities correspond to the fluctuating (dash index), and the total quantities 
correspond to the equilibrium (0 index) terms. Based on this, the linear acoustic ideal gas equation of state, 
 

𝑝′

𝜌0
−

𝑝0

𝜌0
2 𝜌′ = 𝑅𝑇′ 

 
Comments: 

- According to the low amplitude nature of sound, a simple linear algebraic relationship between the variables 
describing the sound field (p’, v’, T’ and ρ’) can be determined. 

- The direct advantage of the linear algebraic relationship between the acoustic variables (p’, v’, T’ and ρ’) is that 
the knowledge of one variable (e.g. based on experimental studies or more complex place- and time-dependent 
calculations) the other variables can also be determined. 

- Three equation (continuity, motion and energy equation) from the linear algebraic equations are direct 
expressions (a constant times one sound field variable results the other sound field variable). 

- Mathematical consequences of linearity, the simple representation (formalism), and the applicability of the 
linear superposition principle. In acoustics, the linear superposition principle means that for a composition of two 
or more sound fields, the resulting sound field variable is a simple algebraic sum of variables of the component 
sound fields (e.g., for a composition of two sound fields, the resulting sound pressure, 𝑝′1+2 = 𝑝′1 + 𝑝′2) 

- The physical consequence of linearity is that sound waves existing at the same time and in same place do not 
interact with each other, do not distort each other (e.g.: the voice of a person speaking while listening to music 
does not change the melody, and vice versa). 
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- The linear acoustic equation of motion is not a common equation of motion because it creates a relationship 
between velocity and pressure (force) rather than acceleration and pressure (force). 

- The linear acoustic equation of motion can be used not only for small changes, but also for estimation in the 
case of large-amplitude disturbances. With its help, in the case of a sudden blockage if the flow in a rigid-walled 
pipe, the pressure increase as a function of the change in velocity can be estimated (simple Allievi’s theory). 

- In the linear acoustic motion equation, replace the particle velocity from the linear acoustic continuity equation, 
and then express the speed of sound from it, 
 

𝑎2 =
𝑝′

𝜌′
 

 
Based on this relationship, the speed of sound cannot be quantified numerically, but it can be physically 
concluded that the speed of sound in a less compressible medium is higher (the same pressure disturbance 
produces a smaller change in density resulting in a higher quotient and a higher speed of sound). 

- The relation suitable for calculating the speed of sound can be derived by substituting the linear acoustic energy 
equation for the linear acoustic state equation for gases, 

 
𝑝′

𝜌0
−

𝑝0

𝜌0
2 𝜌′ = 𝑅

𝑝0

𝑐𝑉𝜌0
2 𝜌′   after rearrangement,   

𝑝′

𝜌′
=

𝑝0

𝜌0
(1 +

𝑅

𝑐𝑣
) =

𝑝0

𝜌0
(

𝑐𝑣

𝑐𝑣
+

𝑅

𝑐𝑣
) =

𝑝0

𝜌0

𝑐𝑝

𝑐𝑣
= 𝜅

𝑝0

𝜌0
= 𝜅𝑅𝑇0  

 

During the manipulation let take into consideration, R=cp-cv, and κ=cp/cv. Using the expression of sound speed, 
and the state equation of perfect gases for the equilibrium variables, the expression of speed of sound is, 
 

𝑎 = √𝜅𝑅𝑇0 

 
- Based on the relation, it can be concluded that in the case of isentropic change of state in gaseous medium, 
the speed of sound (a) depends only on the material quality of the gas (adiabatic coefficient (κ) and specific gas 
constant (R)) and the equilibrium temperature (T0). Using the relation, for example, in 20 degree Celsius air, the 
value of the speed of sound, rounded to the integer, is 343 m/s (κ= 1.4; Rlev = 287 J/kgK and T0 = 293 K). The 
use of our linear model is greatly simplified by the fact that the speed of sound does not depend on frequency 
and intensity. Due to the frequency independence of sound propagation, no colour dispersion occurs in airborne 
sounds (colour dispersion: waveform modification due to different propagation speeds of different frequency 
wave components). 

- In later derivations, to understand the simplifications, it is instructive to determine the relations between the 
numerical magnitudes of the acoustic variables. For this, the values of particle velocity, temperature and density 
fluctuations are expressed as a function of sound pressure. The prominent role of sound pressure can be 
attributed to the fact that the sound pressure is the only acoustic variable that can easily, experimentally 
determine (microphone measurements). Special apparatus can be used to measure particle velocity, but no 
experimental method is available to determine the temperature and density fluctuations in sound field. After the 
transformation of the derived relationships, the v’, T’ and ρ’ variables and their magnitude as a function of sound 
pressure (if a= 340 m/s, ρ0= 1.2 kg/m3 and cp= 1000 J/kgK), are, 

 

p’  >  𝑣′ =
𝑝′

𝜌0𝑎
≈

𝑝′

400
  >  𝑇′ =

𝑝′

𝑐𝑝𝜌0
≈

𝑝′

1200
  >  𝜌′ =

𝑝′

𝑎2 ≈
𝑝′

115600
 

 
We have already mentioned that the hearing threshold at 1kHz is 2⋅10-5Pa effective sound pressure, the 

corresponding particle velocity is 5⋅10-8 m/s, the temperature fluctuation is 1.67⋅10-8 K, and the density 

fluctuation is 1.73⋅10-10 kg/m3, very small values in engineering approach. Among the variables, the value of ' 
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is the smallest, so it is neglected many times during the derivation, despite the fact that the compressibility of 
the medium is an essential condition for the formation of the sound field. 

- Till the amplitude of the sound field variables is small, the accuracy of the linear algebra model is adequate. At 
high amplitudes (e.g. during sound generation, in the case of resonance) the accuracy of the linear model 
decreases rapidly. Another application limitation is that we did not take into account the losses during sound 
propagation in the mathematical model. Outside the source region (usually a few meters away from the sound 
source), within the sound attenuation range (taking into account the frequency range important for engineering 
noise control within a few times 100m from the sound source), avoiding resonant behaviour, the linear model 
works well. In technical practice, for most acoustic and noise control problems, these conditions are met, so the 
system of direct algebraic relationships between sound field variables can be widely used in studies related to 
sound fields. 
 
2.3. Test questions and solved problems 

T.Q.1. Derive the linear relationships between sound pressure, particle velocity, density and temperature 
fluctuations! 

T.Q.2. List and analyse the mathematical and physical consequences of a linear relationship between variables 
describing sound field! 

T.Q.3. Starting from the basic equations of fluid dynamics, derive and analyse the relationship of the speed of 
sound as a function of the equilibrium temperature of the medium, assuming an isentropic change of state! 

S.P.1. Determine the maximum value of the pressure, density and temperature fluctuations (p’max, ρ’max és T’max) 
of a plane wave propagating freely in air, if the maximum value of the particle velocity (v’max) is 0.015 m / s. The 
air temperature (t) is 25 °C, pressure (p) 1bar, adiabatic coefficient (κ) 1.4, specific gas constant (R) 287J/kgK, 
specific heat (cp) 1000J/kgK at constant pressure. 

𝑎 = √𝜅𝑅𝑇0 = √1.4 ∙ 287 ∙ (273 + 25) ≈ 346 𝑚 𝑠⁄    

𝑝0 𝜌0⁄ = 𝑅𝑇0 ,  𝜌0 = 𝑝0 𝑅𝑇0⁄ = 105 287 ∙ (273 + 25)⁄ ≈ 1.17  𝑘𝑔 𝑚3⁄   

𝑐𝑝 𝑐𝑣⁄ = 𝜅 ,  𝑐𝑣 = 𝑐𝑝 𝜅⁄ = 1000 1.4⁄ ≈ 714,3  𝐽 𝑘𝑔𝐾⁄   

𝑝′𝑚𝑎𝑥 = 𝜌0𝑎𝑣′
𝑚𝑎𝑥 ≈ 1.17 ∙ 346 ∙ 0.015 ≈ 6.1 𝑃𝑎  

𝑣′𝑚𝑎𝑥 = 𝜌′
𝑚𝑎𝑥

𝑎 𝜌0⁄  ,  𝜌′
𝑚𝑎𝑥

= 𝑣′𝑚𝑎𝑥𝜌0 𝑎⁄ ≈ 0.15 ∙ 1.17 346⁄ ≈ 5.1 ∙ 10−5 𝑘𝑔 𝑚3⁄   

𝑇′
𝑚𝑎𝑥 = 𝜌′

𝑚𝑎𝑥
𝑝0 𝑐𝑉𝜌0

2⁄ ≈ 5.1 ∙ 10−5 ∙ 105 714.3 ∙ 1,172⁄ ≈ 0.0052  𝐾    

 
----- 

 


