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3.1. The homogeneous linear acoustic wave equation 

The direct algebraic relationship of sound field variables is a useful knowledge, but sound is a physical 
phenomenon, extended in time and space, so in the general modelling of sound field, the space and time 
dependence of sound field variables (p’, v’, T’ and ρ’) must be determined. The space- and time dependent 
mathematical relationship, the wave acoustic model, is described by the wave equation and its solution, the 
wave function. To determine the space- and time dependent functions, the space- and time dependent 
differential equations must be solved, related for the sound phenomenon. 

The first steps of mathematical modelling (selection of variables, physical principles, resolution of sound field 
variables, and simplifications) are the same as in the previous derivation. The difference is the mathematical 
form of equations expressing physical principles, which are now partial differential equations with place- and 
time-dependent variables. For simplicity, the derivation is performed in the first step on a plain sound wave 
propagating in the x direction. 
 
The general 3-dimensional form of the continuity equation, 
 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑣) = 0 

 
The continuity equation in x direction (let introduce the vx= v notation), 
 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑣) = 0 

 
The resolution of the sound field variables, in a non-moving medium (v0= 0 m/s), 
 

𝜕𝜌0

𝜕𝑡
+

𝜕𝜌′

𝜕𝑡
+

𝜕

𝜕𝑥
((𝜌0 + 𝜌′)𝑣′) = 0 

 
The equilibrium value of density is constant in time, so its derivative is zero,  
 

𝜕𝜌′

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌0𝑣′ + 𝜌′𝑣′) = 0 

 
Furthermore, within the brackets, at the second place, the second order small term is neglected, and after the 
derivation of the product, 
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𝜕𝜌′

𝜕𝑡
+ 𝑣′

𝜕𝜌0

𝜕𝑥
+ 𝜌0

𝜕𝑣′

𝜕𝑥
= 0 

 
In a homogeneous medium, the equilibrium density is constant as a function of place, so the second term on the 
left is zero. The remainder is the linear acoustic continuity equation, 
 

𝜕𝜌′

𝜕𝑡
+ 𝜌0

𝜕𝑣′

𝜕𝑥
= 0 

 
The equation is linear because the unknown sound field variables (and their derivatives) are linear expressions, 
acoustic because applied neglections are satisfied in sound fields, and it is a continuity equation because the 
initial equation expresses the principle of mass conservation. 
 
The three-dimensional frictionless equation of motion for fluid flow, the Euler equation, with velocity-derivative 
tensor  
 

𝜕𝑣

𝜕𝑡
+ 𝐷𝑣𝑣 = −

1

𝜌
𝑔𝑟𝑎𝑑 𝑝 + 𝑔 

 
The Euler equation in x direction (with the vx= v notation), 
 

𝜕𝑣

𝜕𝑡
+

𝜕𝑣

𝜕𝑥
𝑣 = −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝑔𝑥 

 
After the resolution of the sound field variables, in a non-moving medium (v0= 0 m/s) the equation of motion, 
 

𝜕𝑣′

𝜕𝑡
+

𝜕𝑣′

𝜕𝑥
𝑣′ = −

1

𝜌0 + 𝜌′

𝜕(𝑝0 + 𝑝′)

𝜕𝑥
+ 𝑔𝑥 

 
In the case of sound phenomena occurring in mechanical engineering practice, the wavelength is large (in 
technical normal state air, the wavelength is rounded to one decimal at 50 Hz is 6.9 m, and at 2 kHz is 171.5 
mm). Thus, the change in sound field variables (in this case particle velocity) per unit length is small, so the 
second term on the left side is small in the second order, and negligible with a good approximation. Furthermore, 
due to the small value of ρ’, let ρ0+ρ’≈ ρ0, so by deriving the sum on the right, 
 

𝜕𝑣′

𝜕𝑡
= −

1

𝜌0

𝜕𝑝0

𝜕𝑥
+ 𝑔𝑥 −

1

𝜌0

𝜕𝑝′

𝜕𝑥
 

 
On the right side of the equation, the first two terms are the values of the force from the equilibrium pressure 
and the external force per unit mass (the left side of the x-direction component of the hydrostatic equation), and 
their signed sum is zero. The disappearance of the external force field in a physical approach means that the air 
particles float in the air, from an acoustic point of view it means that the presence of a static force field does not 
affect the sound propagation (e.g. in a gravitational field the sound propagates vertically downwards, upwards 
and horizontally in the same way). The remaining terms are the linear acoustic equation of motion, 
 

𝜕𝑣′

𝜕𝑡
= −

1

𝜌0

𝜕𝑝′

𝜕𝑥
 

 
The continuity equation and equation of motion include three independent sound field variables (ρ’, v’ and p’), 
the solution requires a third independent equation. Writing the place- and time-dependent energy equation does 
not help in this, because it includes another unknown term the temperature fluctuation (T '). To solve this, we 
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take the third independent equation from the algebraic model (the space and time dependence that is currently 
important to us are already included in the linear acoustic continuity equation and equation of motion), 
 

𝑝′

𝜌′
= 𝑎2 = 𝜅𝑅𝑇0 

 
In the previous equation, the left side is derived from the combination of continuity equation and equations of 
motion, but the fact that the square of the sound speed is constant is turned out from the equation of energy and 
the state of gas. In order to reduce the number of variables (elimination of the particle velocity), we differentiate 
the continuity equation according to time and the equation of motion according to location, 
 

𝜕2𝜌′

𝜕𝑡2
+ 𝜌0

𝜕2𝑣′

𝜕𝑥𝜕𝑡
= 0 

and 

𝜕2𝑣′

𝜕𝑥𝜕𝑡
= −

1

𝜌0

𝜕2𝑝′

𝜕𝑥2
 

 
Taking into account the equality of second-order cross derivatives, substituting the right-hand side of the place-
derivative equation of motion for the second term on the left-hand side of the time-derivative continuity equation, 
 

𝜕2𝜌′

𝜕𝑡2
−

𝜕2𝑝′

𝜕𝑥2
= 0 

 
From the speed of sound squared expression, using ρ’=p’/a2, the homogeneous linear acoustic wave equation, 
 

1

𝑎2

𝜕2𝑝′

𝜕𝑡2
−

𝜕2𝑝′

𝜕𝑥2
= 0 

 
Comments: 

- The homogeneous linear acoustic wave equation is a second-order, hyperbolic type partial differential equation, 
a basic equation for describing sound propagation and sound fields. Its significance is given by the physical 
conclusions that can be drawn from it, its analytical solutions for simple cases and its numerical simulation 
solutions for complex cases. 

- The wave equation was first derived by d'Alembert for other physical phenomena (to describe the mechanical 
disturbance propagation in strings), but for essentially similar wave propagation, so this is why the literature 
refers the wave equation as the d'Alembert equation in many places. 

- Depending on which variables are eliminated during the derivation, or which variable we replace p’ with the 
linear algebraic relationship, an equation of the same shape as the wave equation can be derived for the other 
sound field variables (v’, T’ and ρ’). This seemingly not important, formal mathematical fact physically means 
that during sound propagation, the sound field variables change simultaneously in space and time. 

- In different media, the magnitude of the sound speed is usually between 102…104, so by rearranging the wave 
equation, it can be seen that the variability in space is much smaller than in time. 

- In other fields of physics, in connection with other phenomena (strings, membrane motion, free-surface fluid 
motion, optics, electromagnetism,…), of course for other physical variables, but identical shape of differential 
equation can be derived. Each of these phenomena has a wave nature. Therefore, the equations derived above 
or of the same shape are called wave equations. 

- A three-dimensional wave equation can be derived from the basic three-dimensional equations for the 
description of general sound spaces in space, 
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- A three-dimensional wave equation can be derived from the three-dimensional basic equations to describe 
general three-dimensional sound field, 
 

1

a2

∂2p′

∂t2
− ∇2p′ = 0 

Where the Laplace operator, 

∇2=
∂2

∂𝑥2
+

∂2

∂𝑦2
+

∂2

∂𝑧2
 

 
- The homogeneous acoustic wave equation is suitable for describing the sound field due to simplifications. 
Considering the wave nature of sound, this itself is a big task. Leaving some simplifications (e.g. no viscosity, 
heat-insulating medium), an equation similar to the homogeneous wave equation can be derived. The left side 
of the equations are identical, but the right sides are different. For the homogeneous one the right side is zero. 
When leaving the simplifications, the right hand side turns to not zero. This equation is called, as inhomogeneous 
wave equation, with the help of which both sound generation and sound attenuation can be described. 

- The homogeneous acoustic wave equation has general and partial solutions. For a specific case, the solution 
also requires one initial and two boundary conditions. 
 
 
Solutions of a homogeneous, linear, acoustic wave equation 

From an engineering point of view, an equation is worth as much as it can be solved. Therefore, we pay special 
attention to the different solutions of the wave equation. The solution of the wave equation is called the wave 
function. In addition to the general solution of the homogeneous wave equation, there are important particular 
solutions, and we distinguish solutions for free and bounded spaces. 
 
 
3.2. The general solution of the wave equation 

In a homogeneous, continuous medium of infinite extent, the general solution of the wave equation is the 
following wave function, which describes the one-dimensional plane wave propagation in free space, 
 

𝑝′(𝑥, 𝑡) = 𝑓 (𝑡 −
𝑥

𝑎
) + 𝑔 (𝑡 +

𝑥

𝑎
) 

 
Comments: 

- The solution is the sum of two arbitrary functions (f and g) whose arguments, in an unusual way, instead of 
listing the independent variables (t and x), contain a simple mathematic operation between the time and space 
(x) variables. 

- The formal correctness of the solution can be easily checked. Take component “f” in the first step. The external 
function is a function of space and time, so substituting it in the wave equation and differentiating twice in time 
and space the result will be the same. In the case of the space derivative, the double derivative of the external 
function must be multiplied twice by the derivative of the internal function. For this reason, the shape of the twice-
derivatives are the same, their sign is opposite, so the sum is zero, and the solution is correct. A similar result is 
obtained for the component of the function “g”. 

- The f and g functions are twice continuously differentiable, arbitrary functions, so the wave equations do not 
impose any constraint on the shape of the mechanical disturbance. The physical content of this first astonishing 
fact is that any arbitrary excitation can create a wave. This is supported by practical observation of the diversity 
of sounds. 
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- The argument of the wave function also contains important content. The role in creating the formal correctness 
of the solution has been seen before, now let’s look at what the physical content of the argument is. In the first 
step, we examine the component of the “f” function, and the following figure will help our understanding. 
 

 
 

Distribution of the sound pressure of a wave moving in the positive x direction as a function of space 
at t1 and t2 time 

 
Select the point on the wave front marked with a star at x1 place and at t1 time. At this point, the sound pressure 
is p’*. The point marked with a star on the wave front moves a little later, at time t2, from left to right, to point x2, 
due to the wave nature of the sound. In the case of plane wave sound propagation, the sound rays do not diverge 
and do not converge. Furthermore, due to the initial simplifications, during the sound propagation there is no 
loss (no attenuation) and no creation of sound (no sound source), so at the new time t2 and place x2 in the point 
of the wave front, marked with star, the sound pressure is the same as it was in the origin (x1, t1). Returning to 
the solution function, 
 

𝑝′∗(𝑥1, 𝑡1) = 𝑝′∗(𝑥2, 𝑡2)      in our case, examining component “f”,    𝑓 (𝑡1 −
𝑥1

𝑎
) = 𝑓 (𝑡2 −

𝑥2

𝑎
) 

 
For any function “f”, equality exists if we substitute the same number in “f”,, 
 

𝑡1 −
𝑥1

𝑎
= 𝑡2 −

𝑥2

𝑎
              after rearrangement,               𝑎 =

𝑥2−𝑥1

𝑡2−𝑡1
 

 
With the derivation presented, we confirmed our previous knowledge that the variable “a” in the argument is the 
ratio of the distance traveled by a selected point of the wavefront, x2-x1, and the elapsed time t2-t1, the speed of 
sound. The argument, in its specific mathematical language, expresses the propagating character of the wave. 
With a similar reasoning, the other component of the solution function, “g”, describes the waves traveling in the 
minus x direction. 

- In summary, the general solution of the wave equation describes free-propagating plane waves along the x-
axis (in the positive and negative directions). There are two important physical meanings that arbitrary 
mechanical disturbance will propagate and the magnitude of the propagation velocity is “a”. 

- In space, a plane wave propagating in any optional n direction can be described by the following wavefunction, 
 

𝑝′(𝑥, 𝑡) = 𝑓 (𝑡 −
𝑟 𝑛

𝑎
) + 𝑔 (𝑡 +

𝑟 𝑛

𝑎
) 

 
3.3. Harmonic waves: 

Harmonic excitation produces a harmonic wave. A harmonic wave (also known as a monochromatic wave or 
pure tone) can be described by a sine or cosine function. Among the solutions of the wave equation, the 
prominent significance of harmonic waves can be explained by the fact that the sine and cosine functions 
describing the harmonic wave are the basic elements of harmonic (spectral) analysis. In addition the free 
vibrations of the finite size flexible medium (e.g. air column in tube, cord tensed between two point, bell) are 

p'

p'*

a

x
1

x
2

t 1 t
2

+ +

x
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harmonic vibrations, or their composition, so the sound create by this vibrations will be a harmonic wave, or their 
composition. 

In the argument of the sine and cosine function, suitable for describing harmonic motions, is an angular units 
(radians), so the time-based argument in the general solution must be changed to an angular units, which 
introduces the concept of the phase angle to characterise the state of the wave, 

 

𝜔 (𝑡 −
𝑥

𝑎
) = 𝜔𝑡 −

𝜔

𝑎
𝑥 = 𝜔𝑡 − 𝑘𝑥 

 
The solution function f and g can be extended arbitrarily, so multiplying the argument by the value of the angular 
velocity (ω) is allowed (k is the wavenumber on the right side of the expression). Similar to harmonic oscillations, 
the value of the sound field variable at a given time and place for harmonic waves is equal to the projection value 

of an amplitude vector rotating at an angular velocity  on the real axis x. In the case of vibrations, the angular 
position (phase angle) of the rotating amplitude vector depends only on time, but in the case of waves, the phase 
angle of the rotating vector is determined by the time and location coordinates together. From the last term in 
the expression of the transformed argument, it is clear that at any point at a distance x from the starting point, 
the phase angle must be reduced (retarded) by kx to determine the sound field variable. Taking these into 
account, the wave function of a harmonic sound wave with an amplitude 𝑝̂, and an angular velocity ω traveling 
in the positive x direction for the sound pressure variable, 
 

𝑝′(𝑥, 𝑡) = 𝑝̂ ⋅ 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥 + 𝜑0) 
 
Where 

Notation Meas. unit Name Physical meaning 

p’(x,t) [Pa] sound pressure pressure difference from the equilibrium value in sound field 

𝑝̂ [Pa] sound pressure 
amplitude  

the magnitude of the largest deviation from the equilibrium value 

ωt-kx+φ0 [rad] phase angle position of rotating amplitude vector 

ω=2π/T [rad/s] angular velocity, angular 
frequency 

the phase angle travelled by the wave per unit time 

T [s] time of period at x= const. place the elapsed time between two adjacent identical phase 
states of the wave (e.g. the time between two adjacent positive maximum) 

f=1/T [Hz] frequency number of periods per unit time 

k=2π/λ [rad/m] wave number the phase angle travelled by the wave per unit length 

λ [m] wave length at t= const. time the distance between two adjacent identical phase states 
of the wave (e.g. distance between two adjacent positive maximum) 

φ0 [rad] initial phase angle at t= 0sec time and at x= 0m position, the angle adjusting any phase of 
the wave 

 
In harmonic waves, a surface containing fluid particles in the same perturbation state is called, as phase surface, 
due to the same phase angle of the rotating vector. Let the initial phase be φ0= 0 rad and extract the angular 
velocity from the argument of the harmonic wave function, 
 

𝜔𝑡 − 𝑘𝑥 = 𝜔 (𝑡 −
𝑥

𝜔 𝑘⁄
) = 𝜔 (𝑡 −

𝑥

𝑎𝑓
)  ,   𝑎𝑓 =

𝜔

𝑘
=

2𝜋 𝑇⁄

2𝜋 𝜆⁄
=

𝜆

𝑇
 

 
Where “af” is the phase velocity of the harmonic wave, the propagation velocity of the perturbation state for a 
given phase. 
 
The complex exponential representation of harmonic waves: In derivations related to harmonic waves, 
exponential description is in many cases more advantageous than trigonometric (e.g. in the case of derivation, 
integration). To write the complex sound pressure, we supplement the wave function with an imaginary term, 
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rewriting the trigonometric shape exponentially, separating the place- and time dependent and non dependent 
terms, the complex sound pressure (p’(x, t)) 
 

𝒑′(𝑥, 𝑡) = 𝑝̂ ⋅ 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥 + 𝜑0) + 𝑖 ⋅ 𝑝̂ ⋅ 𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥 + 𝜑0) = 𝑝̂ ⋅ 𝑒𝑖(𝜔𝑡−𝑘𝑥+𝜑0) = 
 

= 𝑝̂ ⋅ 𝑒𝑖𝜑0 ⋅ 𝑒𝑖(𝜔𝑡−𝑘𝑥) = 𝒑̂ ⋅ 𝑒𝑖(𝜔𝑡−𝑘𝑥)  where the complex sound pressure amplitude,   𝒑̂ = 𝑝̂ ⋅ 𝑒𝑖𝜑0 
 
The complex sound pressure amplitude includes the initial phase in addition to the largest pressure deviation. 
However, only the real part of the complex sound pressure has real physical meaning. Thus, at the end of the 
derivations, after taking the formal mathematical advantages, the real part of the complex quantity must be taken 
in order to determine the true sound field characteristic. 
 

𝑝′(𝑥, 𝑡) = 𝑅𝑒(𝒑′(𝑥, 𝑡)) 

 
 
3.4. Test questions and solved problems 

T.Q.1. Based on the governing equation of the fluid mechanics derive in the homogeneous acoustic wave 
equation for the sound pressure variable! List the simplifications, explain the neglected terms in details! Put 
down the general plane wave solution of the equation! What are the importance and application of the equation 
and its solution! 
 
S.P.1. In a long tube, a membrane performs a piston-like harmonic oscillation at a frequency of f= 225 Hz. The 
maximum speed of the membrane (vmax) is 0.006 m/s. At the initial moment, the membrane is in the middle 
position and moves at maximum speed towards the right part of the tube. Determine the particle velocity inside 
the air-filled tube, 226 m to the right of the membrane and 145 sec later than the initial time. The air temperature 
(t) is 250 °C, the adiabatic constant (κ) is 1.4. 

𝑎 = √𝜅𝑅𝑇0 = √1.4 ∙ 287 ∙ (273 + 250) ≈ 458.4 𝑚 𝑠⁄    

𝜔 = 2𝜋𝑓 = 2 ∙ 𝜋 ∙ 225 ≈ 1413.7  𝑟𝑎𝑑 𝑠𝑒𝑐⁄     

𝑘 = 𝜔 𝑎⁄ ≈ 1413.7 458.4⁄ ≈ 3.1  𝑟𝑎𝑑 𝑚⁄     

φ0= 0 rad 

𝑣′(𝑥, 𝑡) = 𝑣 ⋅ 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥 + 𝜑0) = 0.006 ∙ 𝑐𝑜𝑠(1413.7 ∙ 145 − 3.1 ∙ 226 + 0) = 0.0046  𝑚 𝑠⁄       
 

----- 
 


