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4.1. The solution of the homogeneous acoustic wave equation in enclosed space 

The general solution and the harmonic partial solution of the wave equation describe outdoor sound propagation, 
in which case there is nothing blocking the linear sound propagation, no reflections are formed. This condition 
is well suited for solving a number of acoustic problems (e.g., determining the noise in front of a building, caused 
by a fan operating in the open air at the roof of an adjacent building). The other big part of the acoustic problems 
concerns an enclosed space bounded by walls that block propagation. The characteristics of the sound field in 
enclosed space created by the sound source change significantly, compared to the outdoor case (in addition to 
direct radiation, reflections must also be taken into account). In a bounded space, the wave acoustic model 
draws our attention to other important phenomena, so it is worth examining the problem in detail. As before, the 
solution of the wave equation for a finite space is examined, in a first step for a one-dimensional case. To do 
this, place two high-mass, rigid (non-deformable by force), airtight (non-porous, no holes) walls that are non-
permeable for sound perpendicular to the axis at distances x= 0 m and x= L m along the x-axis, see figure. 
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Blocking the sound propagation with rigid, high-mass, airtight walls 
 
According to the no-slip condition in fluid mechanics (the relative velocity between a solid surface and the 
adjacent liquid layer is zero), if the boundary walls are at static rest, the velocity of the neighbouring liquid layer 
is also zero, boundary conditions for particle velocities at x = 0 m and x = L m, 
 

v’(0, t)= 0 m/s       and       v’(L, t)= 0 m/s 
 
The presence of walls does not affect the flow nature of sound and the mathematical model associated with it. 
The continuity theorem, the law of motion, the energy balance, and the ideal gas law are also satisfied in 
enclosed space, so we start from the wave equation when creating the mathematical model. The boundary 
conditions can be easily given for the particle velocity, so the wave equation for the particle velocity is used to 
determine the bounded space solution, 
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The general solution of the wave equation, 
 

𝑣′(𝑥, 𝑡) = 𝑓(𝑎𝑡 − 𝑥) + 𝑔(𝑎𝑡 + 𝑥) 
 
Let us examine how the boundary conditions change the general solution. Substituted into the general solution 
at x= 0 m, 
 

𝑣′(0, 𝑡) = 0 = 𝑓(𝑎𝑡 − 0) + 𝑔(𝑎𝑡 + 0) ,  rearranging, 𝑓(𝑎𝑡) = −𝑔(𝑎𝑡) 
 
In place of the component function “f”, write “- g” and substitute for x= L m, 
 

𝑣′(𝐿, 𝑡) = 0 = 𝑓(𝑎𝑡 − 𝐿) + 𝑔(𝑎𝑡 + 𝐿) = −𝑔(𝑎𝑡 − 𝐿) + 𝑔(𝑎𝑡 + 𝐿) 
 
Shifting the function “g” by (-L) and rearranging, it can be seen, that the function “g” is periodic according to 2L 
distance, 
 

𝑔(𝑎𝑡) = 𝑔(𝑎𝑡 + 2𝐿) 
 
In summary, the boundary conditions limit the general solution, instead of being arbitrary, the components “f” 
and “g” are identical but have opposite signs and are periodic according to 2L. The Fourier series of the periodic 
function “g”, 
 

𝑔(𝑎𝑡 ± 𝑥) =
𝛼0

2
+ ∑ [𝛼𝑛𝑐𝑜𝑠

2𝜋𝑛

2𝐿
(𝑎𝑡 ± 𝑥) + 𝛽𝑛𝑠𝑖𝑛

2𝜋𝑛

2𝐿
(𝑎𝑡 ± 𝑥)]

∞

𝑛=1

 

 
The components of each Fourier series n values are physically harmonic wave components, so the 2L period 
along the length is actually the wavelength (λ). Thus coefficients of the bracketed term in the arguments of the 
cosine and sine functions, the ratio 2π/2L is the wavenumber (k= 2π/λ), 
 

2𝜋𝑛

2𝐿
=

2𝜋

𝜆
𝑛 = 𝑘 ⋅ 𝑛 = 𝑘𝑛  ,   where n= 1, 2, 3, … (natural numbers) 

 
To determine the solution of the wave equation valid in a finite space, substitute the appropriately signed 
members of the Fourier series and apply the new notation, 
 

𝑣′(𝑥, 𝑡) = 𝑓(𝑎𝑡 − 𝑥) + 𝑔(𝑎𝑡 + 𝑥) = −𝑔(𝑎𝑡 − 𝑥) + 𝑔(𝑎𝑡 + 𝑥) = 
 

= −
𝛼0

2
− ∑[𝛼𝑛𝑐𝑜𝑠𝑘𝑛(𝑎𝑡 − 𝑥) + 𝛽𝑛𝑠𝑖𝑛𝑘𝑛(𝑎𝑡 − 𝑥)] +

∞

𝑛=1

 

+
𝛼0

2
+ ∑[𝛼𝑛𝑐𝑜𝑠𝑘𝑛(𝑎𝑡 + 𝑥) + 𝛽𝑛𝑠𝑖𝑛𝑘𝑛(𝑎𝑡 + 𝑥)]

∞

𝑛=1

 

 
Due to the opposite sign, the equilibrium term α0/2 is lost, the physical meaning of which is that due to the 
presence of boundary walls, the equilibrium value of the sound field variables (e.g., equilibrium pressure) does 
not change. By aggregating the two series and removing the coefficients, 
 

= ∑[𝛼𝑛(𝑐𝑜𝑠𝑘𝑛(𝑎𝑡 + 𝑥) − 𝑐𝑜𝑠𝑘𝑛(𝑎𝑡 − 𝑥)) + 𝛽𝑛(𝑠𝑖𝑛𝑘𝑛(𝑎𝑡 + 𝑥) − 𝑠𝑖𝑛𝑘𝑛(𝑎𝑡 − 𝑥))]

∞

𝑛=1
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Using the identities for resolving the sine and cosine of the angle sum and difference, 
 

𝑣′(𝑥, 𝑡) = ∑[−2𝛼𝑛𝑠𝑖𝑛𝑘𝑛𝑎𝑡 𝑠𝑖𝑛𝑘𝑛𝑥 + 2𝛽𝑛𝑐𝑜𝑠𝑘𝑛𝑎𝑡 𝑠𝑖𝑛𝑘𝑛𝑥]

∞

𝑛=1

 

 
The kna product is the angular frequency (ωn) of the nth harmonic component, and removing location-dependent 
sinusoidal term from the brackets, the solution of the on-dimensional homogeneous acoustic wave equation in 
enclosed space is,  

 

𝑣′(𝑥, 𝑡) = ∑[𝑠𝑖𝑛𝑘𝑛𝑥(−2𝛼𝑛𝑠𝑖𝑛𝜔𝑛𝑡 + 2𝛽𝑛𝑐𝑜𝑠𝜔𝑛𝑡)]

∞

𝑛=1

 

 

Where:                                             𝑘𝑛 =
2𝜋

2𝐿
𝑛 ,      and     𝜔𝑛 = 𝑘𝑛𝑎 =

2𝜋

2𝐿
𝑛𝑎 

 
Comments: 

- The most important difference between the general and bounded space solutions of the wave equation is that 
in the argument of the function describing the wave, the place and time variables are included together in the 
general solution, in the bounded space solution separately. The argument (t±x/a) refers to the propagating 
nature of the wave. In the bounded space solution, the separation of the variables x and t indicates the give up 
of the propagating nature of the wave. The presence of the two walls actually, physically restricts the free 
propagation of sound, and this fact is expressed, in the specific language of mathematics (by the separation of 
variables). 

- Let take the nth element of the series of the previous solution, and let −2𝛼𝑛 = 𝑣 ,and let βn = 0, 
 

𝑣′𝑛(𝑥, 𝑡) = 𝑣 𝑠𝑖𝑛𝜔𝑛𝑡 𝑠𝑖𝑛𝑘𝑛𝑥 
 
The particle velocity between the two walls at all points where knx = 0, π, 2π, 3π,… (of course also at x= 0 and 
x= L) regardless of time is 0 m/s, these are the nodal points of the wave. Offset by π/2 radians, where knx = π/2, 
3π/2, 5π/2,… the amplitude of the wave takes a maximum value, these are the anti-nodal point of the wave. 
Another important difference is that in the section between two nodes all liquid parts move in the same phase, 
i.e. they move to the right or to the left uniformly, only their amplitude differs from each other. The propagating 
wave in the presence of the two walls turned into an oscillation of the flexible, continuous medium, characterized 
by a periodic system of nodes and anti-nodes, see figure. 
 

 

x 

Anti-nodal points 

Nodal points v’ t0 t1 

t3 t4= t0+T/2 

t2 

x= L x= 0 

 

Particle velocity distribution in a wave field formed between two walls at different times (t0, t1, …) 
(the time t4 is half a period later than t0) 
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- The Fourier coefficients αn and βn can be determined from the distribution of the particle velocity v' at the initial 
time (t= 0), from the initial value condition. 

- In mathematical language, the constants ω1, ω2, ω3,… and k1, k2, k3,…, are the eigenvalues of the problem. 
The ω1 is the fundamental harmonic (or fundamental angular frequency) of the system, the other ω2, ω3,… are 
upper harmonics. The values of ω and k refer to the case of a specific acoustic arrangement (distance between 
walls, speed of sound,…). Substituting the eigenvalues into the bounded-space solution functions we get the 
eigen-functions, 
 

𝑣′1(𝑥, 𝑡) = 𝑠𝑖𝑛𝑘1𝑥(−2𝛼1𝑠𝑖𝑛𝜔1𝑡 + 2𝛽1𝑐𝑜𝑠𝜔1𝑡) 

𝑣′2(𝑥, 𝑡) = 𝑠𝑖𝑛𝑘2𝑥(−2𝛼2𝑠𝑖𝑛𝜔2𝑡 + 2𝛽2𝑐𝑜𝑠𝜔2𝑡) 
                                             𝑣′3(𝑥, 𝑡) = ⋯ 
 
which satisfy both the wave equation and the connecting boundary conditions. 

- It is very important to realize that eigen-functions are only possibilities in the system. What is heard in the sound 
field depends fundamentally on the excitation. If someone talking in a space bounded by thick walls, the voice 
of the speaker will basically be heard in the sound field. The eigen-functions can be “pick-up” in the sound field 
by creating a pulsed (short-term) sound generation (e.g., applause), an initial disturbing state (initial condition), 
which causes the particles to move in the sound field. The system left alone after the initial perturbation then 
performs its own vibrations, such as the tensioned and then released mass-spring one-degree of freedom 
vibration system, or the tensioned guitar string. (While the one-degree of freedom vibrating system oscillates at 
one eigen-frequency, the air column enclosed between two walls and the string stretched between the two 
points, like a finite piece of continuous medium, can oscillate at any number of discrete frequencies.) The eigen-
function, closely related to the previous explanation, can be derived in this aspects too, since the system left 
after the initial, pulsed excitation describes its own motion (-vibration). The particle velocity distribution as a 
function of space at a given moment of the first three components (base frequency and adjacent two harmonics) 
and the resulting motion created by a suitable initial sound generation is shown on the next figure, 
 

n=1

n=2n=3

x = 0 m x = L m

Az eredő mozgás
v'

x

 

The resultant motion 

 

Distribution of the particle velocities of the base and the first two upper harmonics and the resulting wave in a 
simple sound field as a function of location at a fixed time 

 
- In a bounded space, the solution of the wave equation was determined for the particle velocity variable due to 
the boundary conditions. From an experimental (measurement) point of view, knowledge of sound pressure can 
also be important. In order to determine the sound pressure function, let the function describing the velocity field 
be for n= 1 (base frequency), the indices 1 are omitted for simplification. 
 

𝑣′(𝑥, 𝑡) = 𝑣 ̂𝑠𝑖𝑛𝜔𝑡 𝑠𝑖𝑛𝑘𝑥 
 
The linear acoustic motion equation creates a relationship between sound pressure and particle velocity. 
Expressing the sound pressure from the equation of motion and substituting v’ function, 
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𝑝′(𝑥, 𝑡) = −𝜌0 ∫
𝜕𝑣′

𝜕𝑡
𝑑𝑥 = −𝜌0 ∫

𝜕

𝜕𝑡
(𝑣̂ 𝑠𝑖𝑛𝜔𝑡 𝑠𝑖𝑛𝑘𝑥)𝑑𝑥 = 𝜌0

𝜔

𝑘
𝑣 𝑐𝑜𝑠𝜔𝑡 𝑐𝑜𝑠𝑘𝑥 = 

= 𝜌0𝑎𝑣 𝑠𝑖𝑛 (𝜔𝑡 +
𝜋

2
) 𝑠𝑖𝑛 (𝑘𝑥 +

𝜋

2
) = 𝑝̂ 𝑠𝑖𝑛 (𝜔𝑡 +

𝜋

2
) 𝑠𝑖𝑛 (𝑘𝑥 +

𝜋

2
) 

 
In the sound pressure function, the sound pressure amplitude is the same as the equation of motion already 
derived in the algebraic relationship system (the higher-level, place- and time-dependent mathematical model 
includes the algebraic description). The shape of the space- and time function and the coefficients x and t (ω 
and k) for particle velocity and sound pressure are the same (sound field variables change simultaneously). By 
rewriting the cosines of the sound pressure wave function to sines, it is easy to see that there is a π/2 phase 
shift difference (quarter period) between the particle velocity and the sound pressure, both the space and time 
variable. (For free-propagating plane waves, there is no phase difference between particle velocity and sound 
pressure.) 

- The vibration of a finite long air column enclosed between two walls can be illustrated by the axial vibration of 
a coil spring placed between the walls and rigidly attached to the walls at both ends. By pulling the coil spring in 
the middle in the axial direction to the left and then abruptly releasing it, the fundamental harmonic motion can 
be divided into four characteristic sections. In the first stage, the center of the spring travels to the right at 
maximum speed, in this time the spring is tension free. A quarter of a period later, the movement of the spring 
compressed to the right stops for a moment, a maximum compressive force is generated on the right end and a 
maximum tensile force is generated on the left end. Another quarter later, the spring is tensionless again and 
the center is to the left at maximum speed. In the last quarter, the movement of the spring compressed to the 
left stops again for a moment, with a maximum tensile force on the right end and a compressive force on the left 
end. A similar movement is performed by the air column bounded by walls on both ends (in the sound space, 
the force corresponds to the sound pressure, the speed to the particle velocity variable). 

- A question arises as, what is the importance in engineering practice of the bounded space solution of the wave 
equation, the eigen-functions and eigen-vibrations. Liquid is transported in pipe several times. The fluid in the 
pipeline can be take as a finite long piece of flexible, continuous medium capable of performing its own vibrations 
at given frequencies. If the motion of the medium in the tube is driven by a positive displacement pump, the 
transported medium is excited at a given frequency due to the periodic operation. If the excitation frequency is 
equal to one of the eigen-frequencies, a resonance is formed. The high-amplitude motion generated during 
resonance causes a significant mechanical load in the system, which can cause abnormal operation and, 
ultimately, failure. It is important to note that small amplitude waves were assumed during derivation. During 
resonance, the magnitude of the amplitude can increase significantly, making the accuracy of the linear model 
worse. Knowledge of the dynamic behaviour of pipelines is basic and important mechanical engineering 
knowledge, and the bounded space solution of the wave equation provides introductory course for this. 
Resonance is an important phenomenon in acoustics, so we will deal with it in more detail later. 

- 2 and 3 dimensional oscillations can occur in a finite-sized, continuous elastic medium, depending on the shape 
and the nature of the excitation. A fundamental problem in room acoustics is to reduce the effect of amplifications 
and attenuations due to airborne natural modes in the rooms. But multi-dimensional continuum vibrations can 
occur not only in liquids but also in solid flexible material such as the metal shell of a bell or a gear. 
 
4.2. Test questions and solved problems 

S.P.1. Let calculate the first and third acoustic natural frequencies of the air column in a 4.5 m long tube closed 
at one end and open at the other end. The air temperature (t) 25 °C. 

𝑎 = √𝜅𝑅𝑇0 = √1,4 ∙ 287 ∙ (273 + 25) ≈ 346 𝑚 𝑠⁄    

The solution is a harmonic continuum vibration, shown in the previous section, based on the solution of the wave 
equation in the bounded space. Harmonic vibrations are described by sine and cosine functions. Boundary 
conditions can be easily given for particle velocity from a physical point of view. At closed tube ends, the particle 
velocity is zero. If the closed end of the tube is at rest, the fluid layer just adjacent to it also stands according to 
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the no-slip condition in fluid mechanics. There is nothing effecting the motion at the open tube ends, so the 
particle velocity is maximum here. For a given pipe section, the wavelength of the self-oscillation is appropriate 
if the magnitude of the sine is zero for a closed pipe end and the maximum of the sine for an open pipe end 
(regardless of the sign). In our case, it can be seen for the graphical derivation of the solution, the particle velocity 
distribution of the eigen-vibrations coincides with zero at the closed end of the tube and with the largest absolute 
value of the sine function at the open end. The lowest frequency has the largest wavelength or the least 
sinusoidal period, the increasing frequency decreases the wavelength, the number of sinusoidal periods on the 
pipe section increases, see Fig. 
 
 

x 

v’ v’1 

x 

v’ v’2 

x 

v’ v’3 

First eigen frequency 
(base frequency, λ1=4L) 

Second eigen frequency 

(first upper harmonics, λ2= 4L/3) 

Third eigen frequency 
(second upper harmonics, λ3= 4L/5) 

Blocked tube end Open tube end 

4,5m 4,5m 4,5m 

 

Particle velocity distribution along the x direction of a continuum oscillation in a tube, when closed at one end 
and open at the other end, for the first three eigen-frequencies 

 
First eigen-frequency: Based on the boundary conditions, the particle velocity distribution graph is the quarter 
sine period from the minimum to the adjacent maximum. The wavelength and frequency: 

𝜆1 = 4 ∙ 𝑙 1⁄ = 4 ∙ 4,5 = 18  𝑚 

𝑓1 = 𝑎 𝜆1⁄ ≈ 346 18⁄ ≈ 19,2  𝐻𝑧 
 
Third eigen-frequency: Based on the boundary conditions, the particle velocity distribution graph is the one and 
a quarter sine period from the minimum to the second positive maximum. The wavelength and frequency: 

𝜆3 = 4 ∙ 𝑙 5⁄ = 4 ∙ 4,5 5⁄ = 3,6  𝑚 

𝑓3 = 𝑎 𝜆3⁄ ≈ 346 3,6⁄ ≈ 96,1  𝐻𝑧 
----- 

 


