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Taylor polynomial of the solution from
point j to point j+1:

A differencing scheme with first order 
accuracy:

This is an integration scheme of first

order accuracy.

Another first order scheme:

u’j+1 usually is a given (but more complicated) function of xj+1 and uj+1. 
Substitution of this function into the above formula leads to a more complicated 
expression for uj+1. This kind of scheme is called implicit.

Euler method
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An implicit differencing scheme with second 

order accuracy
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An explicit integrating scheme with second order accuracy

It is often used for integrating the Navier-Stoket equations.

Adams-Basforth scheme

Spatial derivatives in finite volume 
methods

The generic transport equation in integral form:

In which Φ is the mass concentration of a conserved quantity (eg. in kg/kg).
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Spatial derivatives are always in div(...), grad(...) or div(grad(...)) forms. 

We only need to look for the discrete approximations of these operators,
which is done - in the case of finite volume method - on the basis of surface and 

volume integrals along with some spatial interpolations.  

P
Cell centroid.

Here we store φP.

Face centroids. 
Defined by surface vectors.

The numerical mesh around the cell having its center in point P:

Anything can be interpolated
from cells to surfaces...
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From the volume integral the divergence operator we can obtain an average

value for the numerical cell.
The Gauss-Ostrogradskij theorem for a vector quantity u:

For simplicity, we denote components of u vector by ui. The cell-average of 

the divergence operator is now:

in which ahol Ak a cella oldalfalainak indexe. The surface integral for one face is
a scalar product:

Approximation of the divergence 
operator
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dAudAu in which ui is one component of u
interpolated to the cell surface.
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A direct consequence of the Gauss-Ostrogradskij theorem:

The i-th component of the approximate gradient can be evaluated 
according to the following expression:

Ai is the i-th component of the surface vector in Descartes system.

Gradient
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When calculating the discrete approximation of the operator the gradient must

be interpolated onto the face centroids. This is denoted by < > in the following
formula:

The approximate Laplacian

For most field variables - excepting for the pressure field – the face normal 
component of the gradient vector can be calculated on a more simple way:

from φ values stored in the centers of the adjacent cells.
In this case the discrete form of the Laplacian operator can be calculated 

as a linear combination of φP and the neighboring φ values:
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