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An implicit differencing scheme with second
order accuracy
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Euler method

Taylor polynomial of the solution from
point j to point j+1:

Ujy =Uj +u'j Ax+o( Ax )

This is an integration scheme of first
order accuracy.

‘% A differencing scheme with first order
accuracy:
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Another first order scheme:

uj=uj+u' iy (—Ax)+o( Ax)
u’,; usually is a given (but more complicated) function of x;,; and u,;.
Substitution of this function into the above formula leads to a more complicated

expression for u,,;. This kind of scheme is called implicit.

Adams-Basforth scheme
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An explicit integrating scheme with second order accuracy
It is often used for integrating the Navier-Stoket equations.
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Spatial derivatives in finite volume
methods

The generic transport equation in integral form:
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In which @ is the mass concentration of a conserved quantity (eg. in kg/kg).
Spatial derivatives are always in div(...), grad(...) or div(grad(...)) forms.
We only need to look for the discrete approximations of these operators,
which is done - in the case of finite volume method - on the basis of surface and

volume integrals along with some spatial interpolations.

The numerical mesh around the cell having its center in point P:

Cell centroid.
Here we store ¢p.
Face centroids.

Defined by surface vectors. ‘ Anything can be interpolated
from cells to surfaces...




Approximation of the divergence
operator

From the volume integral the divergence operator we can obtain an average
value for the numerical cell.
The Gauss-Ostrogradskij theorem for a vector quantity u:
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14 A

For simplicity, we denote components of u vector by u;. The cell-average of
the divergence operator is now:
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in which ahol A, a cella oldalfalainak indexe. The surface integral for one face is
a scalar product:
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u dA=S u.dA. inwhichu;is one component of u
A[ L Zl ™1 interpolated to the cell surface.
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Gradient

A direct consequence of the Gauss-Ostrogradskij theorem:
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The i-th component of the approximate gradient can be evaluated
according to the following expression:
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A, is the i-th component of the surface vector in Descartes system.

The approximate Laplacian

4¢=V-V¢

When calculating the discrete approximation of the operator the gradient must
be interpolated onto the face centroids. This is denoted by < > in the following

formula:
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For most field variables - excepting for the pressure field — the face normal
component of the gradient vector can be calculated on a more simple way:
from ¢ values stored in the centers of the adjacent cells.

In this case the discrete form of the Laplacian operator can be calculated
as a linear combination of ¢, and the neighboring ¢ values:

Z¢:AP¢P+ZAI¢/

Gg=9-(¥




