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Discretization
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... in @ more simple form: F,-F,=0

inwhich: F, =C,T,—D,(Tp—Tp ) inthe total flux.

In a 3D case we would have 4 more F values.

Numerical integration of the fluxes and the
volume sources

S

fpoviaa= f@v@d5+‘[q¢dv
A A VN
convective flux conductive flux  volume source
FL):".i.dA:<fL>eAegfaAe 2-nd order accurate
A

Compass notation:

1
F,=A, E(f”e + foe )L 2-nd order accurate

(trapeze method)
L .N L
nw, D__.lne A
F,==<(f +4f + f., ), 4thorderaccurate
w P e E ‘T 6 (e +4 e+ fie), (Simpson formula)
. . .
e & < Op = J.q¢dV =4y pVp 2-ndorder accurate
. oS . 4
Interpolation of the fluxes must be at least as
accurate as the integration scheme.

Application of the CDS scheme
CeTe _CwTw = De(TE _TP )_DW(TP _TW )
Face temperatures (7, and T, ) are obtained by a linear interpolation:
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The resultant linear equation for 7,:
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Since A,=A,+A, the linear equation for A, can be regarded as a weighted
average of the neighboring 7 values. T, cannot be an extreme value, if the ,A”
values are positive.

Application in 1D

Steady flow of a constant density fluid with heat conduction
ina const%nt cross-section pipe
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Solution of the system of linear
algebraic equations

c For 4 simulation cells:
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We can solve this system by Gauss elimination.

The matrix of the linear system is a tridiagonal matrix which requires only

2n operations in the case of n cells. (This special case of the Gauss elimination
is called the Thomas algorithm).

Unfortunately, such an efficient direct solution is not possible in 2D and 3D
(iterative methods must be applied).




Implementation in Excel macro
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1. Similar solution is obtained with p,_ 24L

different input parameters. Ase,
2. The error reduces with N2. Reo PUL
(Second order accuracy.) €= Y7
3. Sometimes the solution
oscillates. pudx
What is the condition for the  Pes="7"=>2

onset of instabilities?

Artificial diffusion

An important source of numerical errors. It came from the inaccurate interpolation:
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Itis like if the heat conductivity grew. dT  Tw—T
Let’s substitute the numerical approximation of &2 _ZE—°P

the temperature gradient: dx Ax
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Transportivity

By physical means:

Te must have a decreasing affect on T, for an increasing value of Pe,
because the heat conduction is overridden by the adverse convective flux.
Does the numerical scheme behaves so?
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The cell Peclet number is the ratio of convective and conductive heat fluxes.
In the case of Pe,>>2 the value of A¢ can be a very large negative value.
This is not sensible from physical point of view.

This case is also numerically unstable.

Hybrid Differencing Scheme (HDS)

by Spalding (1972)
The positivity of the “A”s must be ensured.
We need to apply unwinding only if the absolute value of Pe,, is too high.:
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(For small Pe,, cases.)
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Upwind Differencing Scheme (UDS)

for u>=0: T,=Ty, T,=Tp
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for u<0: TW=TP, T =TE
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Further numerical experiments...

Accuracy reduced to 1-st order.

Second Order Upwinding (SOU)

We can interpolate
T within the simulation
cell by using its

gradient:
Wall fluxes than can dT| Ax
be than evaluated like: T,=Tp+—
dx|p 2
Gradients are calculated in 2 steps:
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dl gradients are limited on such a way that they shouldn’t
Secondly: dx introduce oscillations. For details on the gradient limiters
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please refer: C Hirsch, Numerical computation of internal
and external flows.




The numerical diffusion in practice

2D heat transport with zero heat conductivity ( 1=0).
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