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Solution of systems of algebraic 

equations in CFD
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The Poisson equation must be 
solved in every time step

ψωψ∆ →−=

PfP →⋅∇=∆

in Ψ-ω method:

in pressure based methods:

Q
yx

=
∂

∂
+

∂

∂
2

2

2

2 φφ

A simple 2D example

φφφφ=0
(BC of 1-st kind)

4 x 4 intervalls
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The computational domain:

We discretize this by using compass notations:
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4 x 4 intervallum

Ai,j=

iij,i QφA =

We have 9 unknowns.

The system now reads:

The number of unknowns for 101x101 mesh N=104, therefore the number of 

elements of matrix A is 108.

In matrix form

As efficient as any other method for a general case, but it does not make use of 

the favorable characteristics of the matrix. 

1-st step Elimination:
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A21/A11 times the first row is 
subtracted from the second row. 
The first element of the second row 

will become 0. Similarly, we 
eliminate the other elements of the 
second row up to the column N-1.

Repeated for 
every further 

rows.

2-nd step Backsubstitution:

















33

3222

312111

00

0

,

,,

,,,

U

UU

UUU nn

n
n

U

Q
=φ

i,i

N

kk

ki,ki

i
U

UQ ∑
+=

−

= 1

φ

φ

The operation cost of the method is N3/3, out of which the back substitution 

requires only N2/2 operations. Even if A is sparse U is not spares. The total 

memory requirement on a 2D mesh of 101x101 nodes is 400 Mb. We don’t need 
such an accurate solution because the discretization error is large anyway.

Gauss elimination

nn QA ρφ −=
nn φφε −=

( ) ( ) nnnn
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The solution is refined step by step: approximation of φ in the n-th step is φn.

By omitting the vector notations: ρρρρn : residual

The error:

Thus, the same matrix describes
the error.

Iterative methods:

For the converged solution: , therefore:

Let’s subtract Mφ n from both sides:

correction: This is the correction equation.

The better M approximates A is the faster the method converges.

M must be easy to solve eg. diagonal, tri-diagonal, or a ∆ matrix.

Iterative methods
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M is a diagonal matrix.

Example program:

- The program...

- Major characteristics of the result...
- Required number of iterations ...φφφφ=0

2p intervals
Number of unknowns:
(2p-1)2 .

Jacobi iteration
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M is a ∆ matrix. 

Gauss-Seidel relaxation

These terms are already known due to the calculation 
sequence

- It requires halve as much iterations …

- and halve as much memory. 
- The error is asymmetrically distributed.
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Line relaxation

these values are known

Note - Much more efficient methods based on the tri-diagonal solver also exist:
Operator Splitting (or Alternating Direction Implicit, ADI) methods.

these obtained line by line from the
tri-diagonal system solved by the 
Thomas algorithm.
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The problem:
The above mentioned methods are only smoothing the solution. 
The boundary effects need a very long time to penetrate the computational domain.

Solution:

We need to use coarser meshes too. The first estimates of the correction can be 
obtained on a coarser mesh, than can be refined on the fine mesh. 
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The correction equation for a simplified 1D problem:

Multigrid method
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We omit the iteration indices:
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RESTRICTION

these terms are cancelled

PROLONGATION

1. Restriction: ρi → ρI

2. Calculation of ε
I
. Eg. in 3D we have an 8 fold reduced number of unknowns. 

3. Prolongation of εI to the fine mesh. (εi), 
4. Smoothing on the fine mesh.

Restriction: Prolongation:

Why shouldn’t we use an even more coarse mesh when calculating ε
I
?

1. Evaluation of the residuals on the finest mesh. 

2. Consecutive restrictions of ρ to every coarser mesh. 
3. Solution of the system on the coarsest mesh. (Even by using a direct method.) 
4. Consecutively for every finer mesh:

- Prolongation of ε
- Smoothing (Eg. by using Gauss-Seidel relaxation.)

5. Correction of φ. (Only on the finest mesh).

Generalization to 2D or 3D:
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MultigridLine rlx.G-SJacobiNNlinep
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MultigridLine rlx.G-SJacobiNNlinep

Number of iterations in 2D:

Mőveletigény / N:

Computational cost

On fine meshes multigrid prevails!


