
1

Solution of systems of algebraic

equations in CFD

Dr. Gergely Kristóf

26-th September 2009

The Poisson equation must be
solved in every time step

ψωψ∆ →−=

PfP →⋅∇=∆

in Ψ-ω method:

in pressure based methods:

Q
yx

=
∂

∂
+

∂

∂
2

2

2

2 φφ

A simple 2D example

φφφφ=0
(BC of 1-st kind)

4 x 4 intervalls

N

S

EW P

The computational domain:

We discretize this by using compass notations:

P
SPPNWPPE Q

yyyxxx
=







 −
−

−
+






 −
−

−

∆

φφ

∆

φφ

∆∆

φφ

∆

φφ

∆

11

hyx == ∆∆ PNEPWS Qh2
4 =++−+ φφφφφOn isotropic

mesh:

PNEPWS Qh
2

4 =++−+ φφφφφ

-410100000

1-41010000

01-4001000

100-410100

0101-41010

00101-4001

000100-410

0000101-41

00000101-4

φφφφ=0

4 x 4 intervallum

Ai,j=

iij,i QφA =

We have 9 unknowns.

The system now reads:

The number of unknowns for 101x101 mesh N=104, therefore the number of

elements of matrix A is 108.

In matrix form

As efficient as any other method for a general case, but it does not make use of

the favorable characteristics of the matrix.

1-st step Elimination:

















332313

322212

312111

,,,

,,,

,,,

AAA

AAA

AAA

A21/A11 times the first row is
subtracted from the second row.
The first element of the second row

will become 0. Similarly, we
eliminate the other elements of the
second row up to the column N-1.

Repeated for
every further

rows.

2-nd step Backsubstitution:

















33

3222

312111

00

0

,

,,

,,,

U

UU

UUU nn

n
n

U

Q
=φ

i,i

N

kk

ki,ki

i
U

UQ ∑
+=

−

= 1

φ

φ

The operation cost of the method is N3/3, out of which the back substitution

requires only N2/2 operations. Even if A is sparse U is not spares. The total

memory requirement on a 2D mesh of 101x101 nodes is 400 Mb. We don’t need
such an accurate solution because the discretization error is large anyway.

Gauss elimination

nn QA ρφ −=
nn φφε −=

() () nnnn
QQAA ρρφφε =−−=−=

QNM
nn +=+ φφ 1

φφφ ==+ nn 1
NMA −=

() nnnnnn
AQMQNM ρφφφφφ =−=−+=−+1

nn
M ρδ =

43421
nδ

The solution is refined step by step: approximation of φ in the n-th step is φn.

By omitting the vector notations: ρρρρn : residual

The error:

Thus, the same matrix describes
the error.

Iterative methods:

For the converged solution: , therefore:

Let’s subtract Mφ n from both sides:

correction: This is the correction equation.

The better M approximates A is the faster the method converges.

M must be easy to solve eg. diagonal, tri-diagonal, or a ∆ matrix.

Iterative methods

2

P
n
N

n
E

n
P

n
W

n
S Qh21

4 =++−+ + φφφφφ

()P
n
N

n
E

n
W

n
S

n
P Qh

21

4

1
−+++=+ φφφφφ

M is a diagonal matrix.

Example program:

- The program...

- Major characteristics of the result...
- Required number of iterations ...φφφφ=0

2p intervals
Number of unknowns:
(2p-1)2 .

Jacobi iteration

P
n
N

n
E

n
P

n
W

n
S Qh2111

4 =++−+ +++ φφφφφ

()P
n
N

n
E

n
W

n
S

n
P Qh

2111

4

1
−+++= +++ φφφφφ

M is a ∆ matrix.

Gauss-Seidel relaxation

These terms are already known due to the calculation
sequence

- It requires halve as much iterations …

- and halve as much memory.
- The error is asymmetrically distributed.

N

S

EW P

P
n
N

n
E

n
P

n
W

n
S Qh21111

4 =++−+ ++++ φφφφφ

Line relaxation

these values are known

Note - Much more efficient methods based on the tri-diagonal solver also exist:
Operator Splitting (or Alternating Direction Implicit, ADI) methods.

these obtained line by line from the
tri-diagonal system solved by the
Thomas algorithm.

N

S

EW P

The problem:
The above mentioned methods are only smoothing the solution.
The boundary effects need a very long time to penetrate the computational domain.

Solution:

We need to use coarser meshes too. The first estimates of the correction can be
obtained on a coarser mesh, than can be refined on the fine mesh.

Q
x

=
∂

∂
2

2φ

() iiii Q
x

=+− +− 112
2

1
φφφ

∆

() n
ii

n
i

n
i

n
i Q

x
ρφφφ

∆
−=+− +− 112

2
1

() n
i

n
i

n
i

n
i

x
ρεεε

∆
=+− +− 112

2
1

The correction equation for a simplified 1D problem:

Multigrid method

11

2111122

2

1

2

1

2

1

2

1
2

2

1

2

11

+−

+++−−−

++=

=







+−++−++−

iii

iiiiiiiii
x

ρρρ

εεεεεεεεε
∆

I-1 I+1

∆X

i

I

∆x

i-1 i+1i-2 i+2

() iiii
x

ρεεε
∆

=+− +− 112
2

1
We omit the iteration indices:

() ()11222
2

4

1
2

4

1

+−+− ++=+− iiiiii
x

ρρρεεε
∆

() IIII
X

ρεεε
∆

=+− +− 112
2

1
RESTRICTION

these terms are cancelled

PROLONGATION

1. Restriction: ρi → ρI

2. Calculation of ε
I
. Eg. in 3D we have an 8 fold reduced number of unknowns.

3. Prolongation of εI to the fine mesh. (εi),
4. Smoothing on the fine mesh.

Restriction: Prolongation:

Why shouldn’t we use an even more coarse mesh when calculating ε
I
?

1. Evaluation of the residuals on the finest mesh.

2. Consecutive restrictions of ρ to every coarser mesh.
3. Solution of the system on the coarsest mesh. (Even by using a direct method.)
4. Consecutively for every finer mesh:

- Prolongation of ε
- Smoothing (Eg. by using Gauss-Seidel relaxation.)

5. Correction of φ. (Only on the finest mesh).

Generalization to 2D or 3D:

3

792560512010240161291277

75640128025603969636

59160320640961315

334080160225154

131020404973

MultigridLine rlx.G-SJacobiNNlinep

1580128002560051200161291277

150032006400128003969636

118080016003200961315

660200400800225154

260501002004973

MultigridLine rlx.G-SJacobiNNlinep

Number of iterations in 2D:

Mőveletigény / N:

Computational cost

On fine meshes multigrid prevails!

