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In matrix form
P+ —40p + 0 + Iy =h’Qp

We have 9 unknowns. 410 000
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The system now reads:
Aioi=0

The number of unknowns for 101x101 mesh N=104, therefore the number of
elements of matrix A is 108.

The Poisson equation must be
solved in every time step

in W-@ method: Ay=-0 — Yy

in pressure based methods:

AP=V-f — P

Gauss elimination

As efficient as any other method for a general case, but it does not make use of
the favorable characteristics of the matrix.
1-st step Elimination:  A,,/A,, times the first row is

subtracted from the second row.
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The operation cost of the method is N3/3, out of which the back substitution
requires only N2/2 operations. Even if A is sparse U is not spares. The total
memory requirement on a 2D mesh of 101x101 nodes is 400 Mb. We don’t need
such an accurate solution because the discretization error is large anyway.
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A simple 2D example

The computational domain: 82¢ . az¢ 0
o 9y?
We discretize this by using compass notations:
$=0 N
(BC of 1-st kind)
W P E
S

4 x 4 intervalls

¢(¢E ~¢p _dp —m}i[m ~dp ,¢P—¢s]:QP

A\ Ax Ax Ay 4y 4y
oo T Av=dy=h s +dy =40p+ e+ Oy =1°Qp

lterative methods

The solution is refined step by step: approximation of ¢ in the n-th step is ¢".

By omitting the vector notations: A¢" =Q 7/)" p" : residual
The error: '=p-9¢"
n_ _sn)_n_|H_ ~n|_ ,n  Thus, the same matrix describes
Ag"= A(¢ ¢ )_ Q (Q p )_ p the error.
Iterative methods: M ¢”+1 =N¢"+Q

For the converged solution: ¢"+1 =¢" =¢ ,therefore: A=M —N
Let's subtract M@ " from both sides:

M(¢n+l _¢n):N¢n +Q—M¢n =Q—A¢n :pn
-
correction: §" MS" = p” This is the correction equation.

The better M approximates A is the faster the method converges.
M must be easy to solve eg. diagonal, tri-diagonal, or a A matrix.




Jacobi iteration
¢§’ +¢v"’/ 74¢g“ +¢g +¢]'\’] = thP M is a diagonal matrix.
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Example program: A |

- The program...
- Major characteristics of the result...

$=0 - Required number of iterations ...
2r intervals
Number of unknowns:
(2p-1)2.

Multigrid method

The correction equation for a simplified 1D problem:
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Gauss-Seidel relaxation
N o5+ m’,ﬂ 74¢;+1 +op +¢]'\',+l = thP Mis a A matrix.
These terms are already known due to the calculation
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- It requires halve as much iterations ...
- and halve as much memory.
- The error is asymmetrically distributed.

We omit the iteration indices: E Ei —Zgi +gi+l =p;
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Line relaxation

N 95+ -4 + g oy =170,
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these values are known
these obtained line by line from the
tri-diagonal system solved by the
Thomas algorithm.

Note - Much more efficient methods based on the tri-diagonal solver also exist:
Operator Splitting (or Alternating Direction Implicit, ADI) methods.

The problem:
The above mentioned methods are only smoothing the solution.
The boundary effects need a very long time to penetrate the computational domain.

Solution:
We need to use coarser meshes too. The first estimates of the correction can be
obtained on a coarser mesh, than can be refined on the fine mesh.

Generalization to 2D or 3D:
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1. Restriction: p, — p,

2. Calculation of ¢ . Eg. in 3D we have an 8 fold reduced number of unknowns.
3. Prolongation of ¢ to the fine mesh. (),

4. Smoothing on the fine mesh.

Why shouldn’t we use an even more coarse mesh when calculating €, ?

. Evaluation of the residuals on the finest mesh.
. Consecutive restrictions of pto every coarser mesh.
. Solution of the system on the coarsest mesh. (Even by using a direct method.)
. Consecutively for every finer mesh:
- Prolongation of &
- Smoothing (Eg. by using Gauss-Seidel relaxation.)
5. Correction of ¢. (Only on the finest mesh).
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Computational cost

Number of iterations in 2D:

P Niine N Jacobi G-S Line rix. Multigrid
3 7 49 40 20 10 13

4 15 225 160 80 40 33

5 31 961 640 320 160 59

6 63 3969 2560 1280 640 75

7 127 16129 10240 5120 2560 79
Miiveletigény / N:

p Niine N Jacobi G-S Line rix. Multigrid
3 7 49 200 100 50 260

4 15 225 800 400 200 660

5 31 961 3200 1600 800 1180

6 63 3969 12800 6400 3200 1500

7 127 16129 51200 25600 12800 1580

On fine meshes multigrid prevails!




