

Nonlinear Rock and Roll -Modelling and Control of Parametric Resonanace in Wave Energy Devices

Josh Davidson

Dept of Fluid Mechanics Budapest University of Technology and Economics

Outline

- Recap of presentation from last workshop
- Parametric resonance in WECs
 - Project background
 - Modelling methods
 - Control

Last Workshop

"Evaluation of Energy Maximising Control Systems for WECs using CFD"

Last Workshop

"Evaluation of Energy Maximising Control Systems for WECs using CFD"

• Utilising CFD Numerical Wave Tanks (NWTs) as a high-fidelity test bed for control performance

Last Workshop

"Evaluation of Energy Maximising Control Systems for WECs using CFD"

- Utilising CFD Numerical Wave Tanks (NWTs) as a high-fidelity test bed for control performance
- System identification of computationally efficient hydrodynamic models from CFD NWT experiments

Motivating Example

* Davidson et al, "Evaluation of energy maximising control systems for wave energy converters using OpenFOAM", OpenFOAM – Selected papers from the 11th Workshop, Springer, 2019

Results

* Davidson et al, "Evaluation of energy maximising control systems for wave energy converters using OpenFOAM", OpenFOAM – Selected papers from the 11th Workshop, Springer, 2019

Operational Space

* Davidson et al, "Evaluation of energy maximising control systems for wave energy converters using OpenFOAM", OpenFOAM – Selected papers from the 11th Workshop, Springer, 2019

* Ringwood, Davidson and Giorgi, *"Identifying Models Using Recorded Data"*, Numerical Modelling of Wave Energy Converters : State-of-the-art for single devices and arrays, Academic Press, 2016

Adaptive Control

* Davidson, Genest and Ringwood, "Adaptive control of a WEC simulated in a numerical wave tank", EWTEC, 2017

Results

* Genest, Davidson and Ringwood, "Adaptive control of a WEC", IEEE Transactions on Sustainable Energy, 2018

PTO Energy Flow

* Genest, Davidson and Ringwood, "Adaptive control of a WEC", IEEE Transactions on Sustainable Energy, 2018

PTO Modelling and Efficiency

* Penalba, Davidson, Windt and Ringwood, "A high-fidelty wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models", Applied Energy, 2018

Background

• Open forum discussion at 2017 Maynooth Wave Energy Workshop lead by Prof Alain Clement

linal: Open Forum discussion

INSTABILITIES of WECs:

Good news? Bad news?

Alain H. CLEMENT, Senior Researcher , LHEEA Lab, ECN/CNRS , Nantes (FR)

Background

- Open forum discussion at 2017 Maynooth Wave Energy Workshop lead by Prof Alain Clement
- Collaboration with Dr Tamas Kalmar-Nagy from the Dept of Fluid Mechanics, Budapest University of Technology and Economics (BME)

Background

- Open forum discussion at 2017 Maynooth Wave Energy Workshop lead by Prof Alain Clement
- Collaboration with Dr Tamas Kalmar-Nagy from the Dept of Fluid Mechanics, Budapest University of Technology and Economics (BME)
- May 2019 : Commenced 2 year EU funded Research Fellowship, at Dept Fluid Mechanics, BME for project 'Nonlinear Rock and Roll – Modelling and Control of Parametric Resonance in Wave Energy Converters'
 - Secondments with IST Lisbon, DTU, Wave Venture and Mocean Energy

Parametric Resonance

 Parametric resonance is a phemonenon caused by the time-varying changes in the parameters of a system

Parametric Resonance

- Parametric resonance is a phemonenon caused by the time-varying changes in the parameters of a system
- Example:

Parametric Resonance

- Parametric resonance is a phemonenon caused by the time-varying changes in the parameters of a system
- Example:

• First observations/studies date back to **Froude** in **1861** who described that large roll motions occur when a ship's roll natural period is twice the heave/pitch natural period.

- First observations/studies date back to Froude in 1861 who described that large roll motions occur when a ship's roll natural period is twice the heave/pitch natural period.
- Parametric roll is a well known problem in shipping

- First observations/studies date back to Froude in 1861 who described that large roll motions occur when a ship's roll natural period is twice the heave/pitch natural period.
- Parametric roll is a well known problem in shipping
- Many other studies for parametric pitch/roll of offshore spar platforms

- First observations/studies date back to Froude in 1861 who described that large roll motions occur when a ship's roll natural period is twice the heave/pitch natural period.
- Parametric roll is a well known problem in shipping
- Many other studies for parametric pitch/roll of offshore spar platforms
- BAD NEWS Parametric resonance is considered an undesired problm in these fields and research focusses on suppression and stabilisation of parametric pitch/roll

Resonance	Parametric Resonance

Resonance	Parametric Resonance
 Well known in wave energy 	 Very little attention

Resonance	Parametric Resonance
 Well known in wave energy 	 Very little Much less attention

Resonance	Parametric Resonance
 Well known in wave energy 	 Very little Much less attention
 Linear modelling 	 Nonlinear modelling

Resonance	Parametric Resonance
 Well known in wave energy 	 Very little Much less attention
• Linear modelling	 Nonlinear modelling
 Linear increase in oscillation amplitude 	 Exponential increase in oscillation ampltude

* Image credit – Google Images. Idea – Prof Ringwood's Seminars

Modelling methods

- Linear models
- Nonlinear potential flow
- CFD
- Nonlinear parametric models
- Moorings

Linear hydrodynamic model

Babarit, A., Mouslim, H., Clément, A., and Laporte-Weywada, P.

On the numerical modelling of the nonlinear behaviour of a wave energy converter.

In Proceedings of the 28th International Conference on Offshore Mechanics & Arctic Engineering. (OMAE) - 2009

Nonlinear Froude Krylov

Babarit, A., Mouslim, H., Clément, A., and Laporte-Weywada, P.

On the numerical modelling of the nonlinear behaviour of a wave energy converter.

In Proceedings of the 28th International Conference on Offshore Mechanics & Arctic Engineering. (OMAE) - 2009

Nonlinear Froude Krylov + Drag

CFD

Palm, Bergdahl and Eskilsson ⁻² Parametric excitation of ¹⁻²⁻⁵ moored wave energy ³⁻²⁻⁵ converters using viscous and ⁴⁻³⁻³ non-viscous CFD simulations, ⁻⁴ RENEW, 2018

Nonlinear Parametric Models

Nonlinear Parametric Models

Example – Mathieu Equation

 $\ddot{x_4}(t) + b\dot{x_4}(t) + a(t)x_4(t) = 0.$

Example - Mathieu Equation

$$\ddot{x_4}(t) + b\dot{x_4}(t) + a(t)x_4(t) = 0.$$

Time-varying hydrostatic restoring torque

$$a(t) = S_h(t)/(M + m_\infty)$$

Example - Mathieu Equation

$$\dot{x_4}(t) + b\dot{x_4}(t) + a(t)x_4(t) = 0.$$

Time-varying hydrostatic restoring torque

$$a(t) = S_h(t)/(M + m_\infty)$$

...caused by heave motion oscillations

Nonlinear heave restoring force

$$(m+\mu_{\infty})\ddot{x}_{3}(t) + \int_{0}^{t} K_{r}(t-\tau)\dot{x}_{3}(\tau)d\tau + f_{s}(x_{3},t) = f_{e}(t)$$

Nonlinear heave restoring force

Nonlinear heave restoring force

nonlinear discrete time hydrodynamic models, RENEW, 2014

Nonlinear heave restoring torque for parametric resonance

$$(m+\mu_{\infty})\ddot{x}_{5}(t) + \int_{0}^{t} K_{r}(t-\tau)\dot{x}_{5}(\tau)d\tau + f_{s}(x_{5},x_{3},t) = f_{e}(t)$$

Nonlinear heave restoring torque for parametric resonance

$$(m+\mu_{\infty})\ddot{x}_{5}(t) + \int_{0}^{t} K_{r}(t-\tau)\dot{x}_{5}(\tau)d\tau + f_{s}(x_{5},x_{3},t) = f_{e}(t)$$

Nonlinear heave restoring torque for parametric resonance

$$(m+\mu_{\infty})\ddot{x}_{5}(t) + \int_{0}^{t} K_{r}(t-\tau)\dot{x}_{5}(\tau)d\tau + f_{s}(x_{5},x_{3},t) = f_{e}(t)$$

CFD System ID of Damping

* Koo, Kim and Randall, *Mathieu instability of a spar platform with mooring and risers*, Ocean engineering, 2004

Moorings

* Davidson and Ringwood, *Mathematical modelling of mooring* systems for wave energy converters – A review, Energies, 2017

Controlling Parametric Resonance in WECs

• The exponential increase in oscillation amplitude caused by PR can be either detrimental or beneficial for different types of WECs.

Controlling Parametric Resonance in WECs

- The exponential increase in oscillation amplitude caused by PR can be either detrimental or beneficial for different types of WECs.
- Correspondingly, control systems should be designed to mitigate or induce this effect.

Controlling Parametric Resonance in WECs

- The exponential increase in oscillation amplitude caused by PR can be either detrimental or beneficial for different types of WECs.
- Correspondingly, control systems should be designed to mitigate or induce this effect.
- The modelling methods discussed in this presentation will be used to investigate control techniques to:
 - Suppress parametric resonance in certain classes of WECs, and
 - Harness parametric resonance in other types of WECs

Questions / Discussion

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 867453