Utilization of Marine Renewable Energy: Aspects and Applications Part 2

Dr Josh Davidson Dept of Fluid Mechanics Budapest University of Technology and Economics

November - 2019

Utilization of Marine Renewable Energy - Aspects

## Part 2 - Applications

- Energy
  - Small scale
  - Large scale
- Water
- Air conditioning

## What/when was the first application of marine renewable energy?

What/when was the first application of marine renewable energy?

• When : 3000 BC

## What/when was the first application of marine renewable energy?

- When : 3000 BC (Along the Nile in 5000 BC)
- What:



## What kind of applications require small scale MRE?

### Marine based sensors



<sup>0</sup>Albaladejo et al, Wireless sensor networks for oceanographic monitoring: A systematic review. Sensors, 2010

## Marine based sensors - Solar



## Marine based sensors - Ranking of possible energy sources

| Rank | Resource | Energy density                  | Availability                                  |
|------|----------|---------------------------------|-----------------------------------------------|
| 1    | Wave     | $500 - 50000 \text{ W/m}^2$     | 24 hours per day                              |
| 2    | Solar    | $50-500 \text{ W/m}^2$          | Day time only. Reductions due to cloud        |
|      |          |                                 | coverage and misalignment of PV panel         |
|      |          |                                 | with incoming sunlight.                       |
| 3    | Wind     | $100\text{-}1000 \text{ W/m}^2$ | 24 hours per day. Highly variable.            |
|      |          |                                 | Reductions due to logarithmic friction        |
|      |          |                                 | layer towards the ocean surface.              |
| 4    | Currents | $0.1-10 \text{ W/m}^2$          | Site dependent.                               |
| 5    | MFC      | $0.1 { m W/m^3}$                | On the sea floor                              |
| ?    | Thermal  | Unknown                         | Possibly more consistent that solar and wind. |

#### Thermal energy harvester



Energy - Small scale Thermal energy harvester



## Not enough power! Can we improve this somehow???

#### Energy - Small scale Thermal energy harvester

## Solar thermal collector



<sup>0</sup>Davidson, Energy Harvesting for Marine Based Sensors, PhD Thesis, Available at: https://www.researchgate.net/profile/Josh\_Davidson3

Utilization of Marine Renewable Energy - Aspects

#### Solar thermal collector - Annual average power







<sup>0</sup>Google Images

Utilization of Marine Renewable Energy - Aspects

## Outline

## • Will just focus on wave energy in today's lecture

#### Wave absorption

- Conservation of energy stipulates that the energy transported by a wave should diminish after passing a WEC.
  - The difference in the wave's energy before and after intercepting the WEC should ideally be the amount of electrical energy produced by the WEC.
- For a wave to be diminished, another wave must destructively interfere with it. Thus, during the process of absorbing energy from a wave, a WEC creates its own wave which destructively interferes with the incoming wave, reducing the receding wave on the lee-ward side.
- Falnes<sup>1</sup> described the crux of this concept as; "for an object to be a good wave absorber it must be a good wave maker".

<sup>&</sup>lt;sup>1</sup>J. Falnes. Ocean Waves and Oscillating Systems : linear interactions including wave-energy extraction, 2002.

#### Wave Energy Conversion Principles of capturing energy from waves



#### To absorb waves means to generate waves.

- Curve a represents an undisturbed incident wave.
- Curve **b** illustrates symmetric wave generation (on otherwise calm water) by a body oscillating in heave (up and down).
- Curve c illustrates antisymmetric wave generation by a body oscillating in surge.
- Curve d, represents the superposition (sum) of the above three waves, illustrating complete absorption of the incident wave energy

<sup>1</sup>J. Falnes. Ocean Waves and Oscillating Systems : linear interactions including wave-energy extraction, 2002.

- A wave energy converter (WEC) can absorb power from a greater area than its own cross-section
- The maximum capture width for a heaving axi-symmetric body is equal to the wavelength divided by  $2\pi$ .

 $Capture width = \frac{Absorbed power}{Power per meter of wavefront}$ 



<sup>1</sup>J. Falnes. Ocean Waves and Oscillating Systems : linear interactions including wave-energy extraction, 2002.



Give me but a firm spot on which to stand, and I shall move the earth.

— Archimedes —

## How does Archimedes point relate to wave energy conversion?

## How does Archimedes point relate to wave energy conversion?

- To convert motion into power you need something to react against.
- Power is not derived from motion itself, but rather from relative motion between objects.

 In his review of WECs, Bracewell<sup>2</sup>identified that all proposed types of WECs have three things in common;

<sup>2</sup>R. Bracewell. *Frog and PS Frog: A study of two reactionless ocean wave energy converters*, PhD thesis, Lancaster University, 1990.

- In his review of WECs, Bracewell identified that all proposed types of WECs have three things in common;
  - They need a working surface for the waves to act against,

<sup>2</sup>R. Bracewell. *Frog and PS Frog: A study of two reactionless ocean wave energy converters*, PhD thesis, Lancaster University, 1990.

- In his review of WECs, Bracewell identified that all proposed types of WECs have three things in common;
  - They need a working surface for the waves to act against,
  - There must be something providing a stable frame of reference to react these wave forces against, and

<sup>&</sup>lt;sup>2</sup>R. Bracewell. *Frog and PS Frog: A study of two reactionless ocean wave energy converters*, PhD thesis, Lancaster University, 1990.

- In his review of WECs, Bracewell identified that all proposed types of WECs have three things in common;
  - They need a working surface for the waves to act against,
  - There must be something providing a stable frame of reference to react these wave forces against, and
  - The working surface must be capable of being moved by the wave forces relative to this frame of reference.

<sup>&</sup>lt;sup>2</sup>R. Bracewell. *Frog and PS Frog: A study of two reactionless ocean wave energy converters*, PhD thesis, Lancaster University, 1990.

- In his review of WECs, Bracewell identified that all proposed types of WECs have three things in common;
  - They need a working surface for the waves to act against,
  - There must be something providing a stable frame of reference to react these wave forces against, and
  - The working surface must be capable of being moved by the wave forces relative to this frame of reference.
- He also notes that, for the devices reviewed, the frame of reference was the largest single element in the final estimated cost of power produced.

<sup>&</sup>lt;sup>2</sup>R. Bracewell. *Frog and PS Frog: A study of two reactionless ocean wave energy converters*, PhD thesis, Lancaster University, 1990.

## What can be used to provide the reaction frame of reference?

#### What can be used to provide the reaction frame of reference?

• French<sup>3</sup>identifies four options for the reaction:

<sup>&</sup>lt;sup>3</sup>MJ French. On the difficulty of inventing an economical sea wave energy converter: a personal view. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2006.

#### 1 : Reaction against the sea floor







2: A large structure with extreme dimensions of the order of a wavelength which is subject to a number of wave forces of different phases that provide reactions for each other,







Utilization of Marine Renewable Energy - Aspects

## Wave Energy Conversion Reaction frame of reference

## 3 : Reacting against a mass that is part of the WEC









Utilization of Marine Renewable Energy - Aspects

## 4 : Reaction from a part of the sea



## Which other marine renewable energies have similar requirements?

# Ocean Energy Conversion







Utilization of Marine Renewable Energy - Aspects

## Wave Energy Conversion Design

#### Consider the simple WEC

- What should be the radius of the buoy???
- Answer : It depends on the input wave spectrum

## Design principle

 Maximum energy will be absorbed by the WEC if it resonates with the input waves

Let's model the WEC to determine its natural frequency...



 As a simplified approximation, we can model the WEC as a mass-spring-damper system

$$m\ddot{x} + b\dot{x} + kx = F_{Wave}(t) + F_{PTO}(t)$$
(1)

Utilization of Marine Renewable Energy - Aspects

 As a simplified approximation, we can model the WEC as a mass-spring-damper system

$$m\ddot{x} + b\dot{x} + kx = F_{Wave}(t) + F_{PTO}(t)$$
<sup>(2)</sup>

• The natural frequency of such a system equals?

 As a simplified approximation, we can model the WEC as a mass-spring-damper system

$$m\ddot{x} + b\dot{x} + kx = F_{Wave}(t) + F_{PTO}(t)$$
(3)

• The natural frequency of such a system equals:

$$\omega_n = \sqrt{\frac{k}{m}} \tag{4}$$

 As a simplified approximation, we can model the WEC as a mass-spring-damper system

$$m\ddot{x} + b\dot{x} + kx = F_{Wave}(t) + F_{PTO}(t)$$
(5)

• The natural frequency of such a system equals:

$$\omega_n = \sqrt{\frac{k}{m}} \tag{6}$$

• The spring restoring co-efficient, *k*, and the mass of the sphere, *m*, both depend on the radius of the buoy (as we will see). So we can design the buoy radius so that the WEC resonates at a chosen frequency

#### Mass

## • Mass equals half the volume times the density of water

$$m = (1/2)(4/3\pi R^3)(
ho_{Water})$$

Utilization of Marine Renewable Energy - Aspects

(7)

## Wave Energy Conversion Design

## Spring

- The hydrostatic spring force equals the mismatch between buoyancy and gravity as the buoy moves away from its equilibrium into /out of the water.
- This equals the change in the weight of the fluid displaced by the submerged part of the WEC.
- Weight = Volume  $\times$  Density of water  $\times$  Gravity
- Force =  $\Delta$  Weight =  $\Delta$  Volume  $\times$  Density of water  $\times$  Gravity
- At equilibrium, we will approximate the change in volume as the cross-sectional area  $\times$  the heave displacement

$$\Delta Volume = \pi R^2 x \tag{8}$$

• Therefore:

$$F_{spring} = \rho_{Water} g \pi R^2 x \tag{9}$$

• Therefore:

$$k = \rho_{Water} g \pi R^2 \tag{10}$$

## Natural frequency

$$\omega_n = \sqrt{\frac{k}{m}} \tag{11}$$

$$\omega_n = \sqrt{\frac{\rho_{Water}g\pi R^2}{\frac{4}{6}\pi R^3 \rho_{Water}}} \tag{12}$$

$$\omega_n = \sqrt{\frac{g}{\frac{4}{6}R}} \tag{13}$$

$$R = \frac{4\omega_n^2}{6g} \tag{14}$$



<sup>3</sup>http://inwrdam.org.jo/2019/01/saline-water-desalination/



<sup>3</sup>https://www.aquatechtrade.com/news/aquatech-news/desalination-wave-powered/

Can use the output brine from the desalination for salinity gradient energy...



Utilization of Marine Renewable Energy - Aspects



<sup>3</sup>https://www.makai.com



<sup>3</sup>https://www.makai.com

Utilization of Marine Renewable Energy - Aspects