

Simple problems

Miklós BALOGH and Josh DAVIDSON

Review on theory

Numerical methods

Numerical analysis

Simple problems

Scripting

Laboratory

Assignments

### Familiarization with OpenFOAM Open-Source CFD Course 2021 – Lab 2

#### Miklós BALOGH and Josh DAVIDSON

2021

Miklós BALOGH and Josh DAVIDSON

Simple problems

2021 1 / 23



## Hydro-thermodynamical equation system

Simple problems

Miklós BALOGH and Josh DAVIDSON

Review on theory

Numerical methods

Numerical analysis

Simple problems

Scripting

Laborator

Assignments

Conservation laws

• Momentum (Navier–Stokes equations):

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla p + \nu \left[ \nabla^2 \boldsymbol{u} + \frac{1}{3} \nabla \left( \nabla \cdot \boldsymbol{u} \right) \right] + \boldsymbol{g}$$

• Mass (continuity):

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

Energy:

$$\frac{\partial\left(\rho c_{p}T\right)}{\partial t}+\nabla\cdot\left(\rho c_{p}T\boldsymbol{u}\right)=\nabla\cdot\left(k\nabla T\right)+Q_{\nu}+Q_{ch.reaction}$$

Relationship between the material properties

• Ideal gas law:

$$p = \rho RT$$

Miklós BALOGH and Josh DAVIDSON



### Continous, general solution

Simple problems

Miklós BALOGH and Josh DAVIDSON

Review on theory

Numerical methods

Numerical analysis

Simple problems

Scripting

Laboratory

Assignments

A fundamental problem in analysis is to decide whether such smooth, physically reasonable solutions exist for the Navier–Stokes equations, thus the Clay mathematical institute posts 1 million dollar reward among the seven most important mathematical problems of the millennium. These are:

- Yang-Mills and Mass Gap
- Riemann Hypothesis
- P vs NP Problem
- Navier-Stokes Equation
- Hodge Conjecture
- Poincaré Conjecture (solved by Grigorij Perelman, 2003)
- Birch and Swinnerton-Dyer Conjecture



## Numerical solution of the N–S equations

Simple problems

Miklós BALOGH and Josh DAVIDSON

Review on theory

#### Numerical methods

Numerical analysis

Simple problems

Scripting

Laboratory

- General analytical solution of the N–S equation are not known, but numerical approximation is possible:
  - Spatial discretization (mesh: grid or cell network)
  - Boundary conditions (at the bounding surfaces)
  - Temporal discretization (suitable time step,  $\Delta t$ )
  - Initial conditions (at t = 0)
- Simplification of geometry: sub-grid features and details
- Simplifications of equations:
  - Suitable coordinate system (Cartesian, cylindrical, spherical)
  - Steady vs. unsteady
  - Compressible vs. incompressible
  - Laminar vs. turbulent
  - External forces (gravitational, Coriolis, centripetal)



# Numerical solution of the N–S equations

Simple problems

Miklós BALOGH and Josh DAVIDSON

Review on theory

#### Numerical methods

Numerical analysis

Simple problems

Scripting

Laboratory

- Spatial discretization
  - Finite Volume Method (FVM)
  - Finite Element Method (FEM)
  - Finite Difference Method (FDM)
  - Spectral methods (e.g. for DNS on periodic domains)
  - Particle methods (e.g. SPH)
  - Lattice gas model, lattice-Boltzmann method
- Temporal discretization (unsteady problems)
  - Explicit and implicit schemes, stability criteria (e.g. CFL)
  - Local time-step, adaptive time-step control
- Pressure-velocity coupling
  - Pressure correction (sequential, e.g. SIMPLE, PISO)
  - Coupled: simultaneous solution of the equations

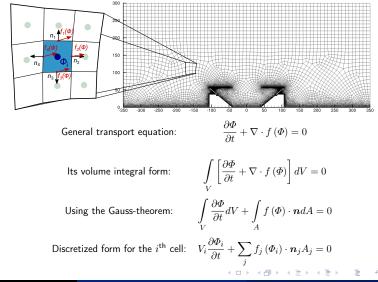


# Finite Volume Method (FVM)

Simple problems

Miklós BALOGH and Josh DAVIDSON

Review or theory


#### Numerical methods

Numerical analysis

Simple problems

Scripting

Laborator





### Steps of the numerical analysis

Simple problems

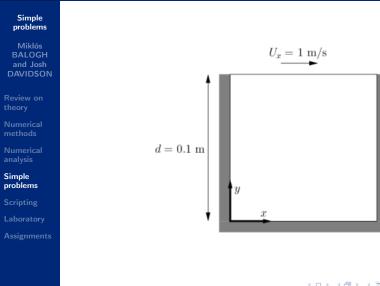
Miklós BALOGH and Josh DAVIDSON

Review on theory

Numerical methods

Numerical analysis

Simple problems


Scripting

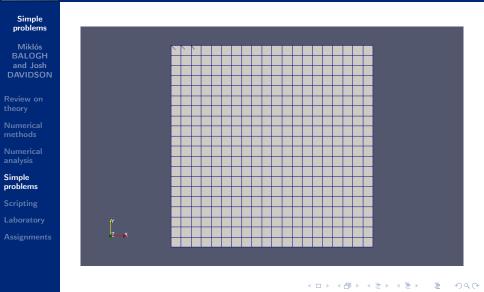
Laboratory

- Construction of the geometry (computational domain)
- Mesh generation
  - The basis of the spatial discretization
  - Decomposition of the domain to cells
- Definition of the boundary conditions
- Definition of the initial conditions
  - Constant predefined values
  - Hybrid potential flow solver
  - Patch values given cell by cell (e.g. theoretical values)
  - Mapping values from simulation (interpolation)
- Simulation (numerical integration of the equations)
- Post-processing



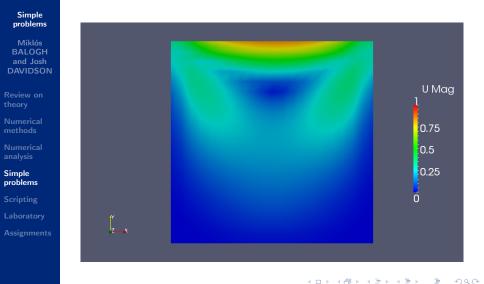
## Lid-driven cavity – Geometry




2021 8 / 23

э

Sac




### Lid-driven cavity - Mesh

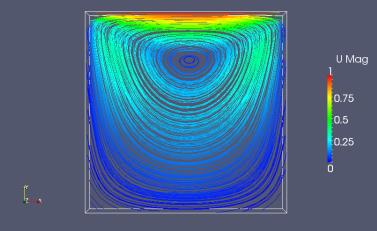




### Lid-driven cavity - Velocity



Miklós BALOGH and Josh DAVIDSON


Simple problems

2021 10 / 23



### Lid-driven cavity – Streamlines





2021 11/23

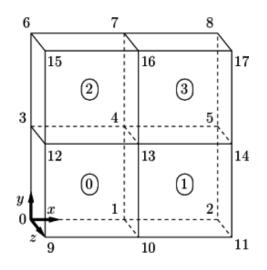
Sac



## Refined lid-driven cavity - Geometry



Miklós BALOGH and Josh DAVIDSON


Review or theory

Numerical methods

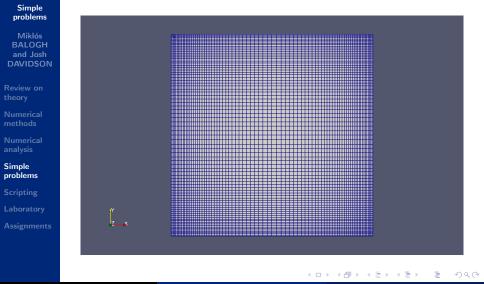
Numerical analysis

Simple problems

Scripting Laboratory



Miklós BALOGH and Josh DAVIDSON


2021 12/23

Sac

ъ



### Refined lid-driven cavity - Mesh



Miklós BALOGH and Josh DAVIDSON

Simple problems

2021 13 / 23



### Refined lid-driven cavity - Velocity



Miklós BALOGH and Josh DAVIDSON

Review or theory

Numerical methods

Numerica analysis

Simple problems

Scripting Laboratory Assignment



э

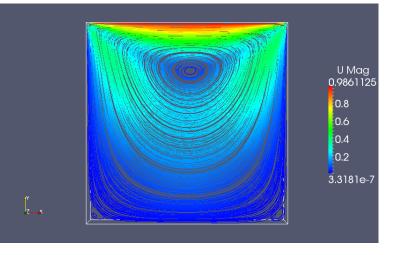
Sac



### Refined lid-driven cavity - Streamlines



Miklós BALOGH and Josh DAVIDSON


Review or theory

Numerical methods

Numerica analysis

Simple problems

Scripting Laboratory Assignment



2021 15/23

Sac



# Mapping fields in OpenFOAM

Simple problems

Miklós BALOGH and Josh DAVIDSON

Review on theory

Numerical methods

Numerical analysis

Simple problems

Scripting Laboratory Assignment • One can initialize a simulation with former results

- obtained even on lower resolution,
- via interpolating the fields to the new mesh

| cd \$FOAM_RUN/tut           | orials/incompressible |
|-----------------------------|-----------------------|
| <pre>cd icoFoam/cavit</pre> | y/cavity              |
| blockMesh > bloc            | kMesh.log             |
| icoFoam > icoFoa            | n.log                 |
| <pre>cd/cavityGrad</pre>    | e                     |
| blockMesh > bloc            | kMesh.log             |
| mapFields/cav               | ity -consistent       |
| icoFoam > icoFoa            | n.log                 |



#### Simple problems

Miklós BALOGH and Josh DAVIDSON

Scripting

| Listing 1: | Hello | World | sample | script |
|------------|-------|-------|--------|--------|
|------------|-------|-------|--------|--------|

```
1 #!/bin/bash
2 STR="Hello World!"
3
```

echo \$STR

Listing 2: OpenFOAM runner sample script

| 1 | #!/ | bin/ | bash |
|---|-----|------|------|
|---|-----|------|------|

```
2
 blockMesh > blockMesh.log
```

3 icoFoam > icoFoam.log



#### Simple problems

Miklós BALOGH and Josh DAVIDSON

Review on theory

Numerical methods

Numerical analysis

Simple problems

Scripting

Laboratory

Assignments

1 #!/bin/bash
2 START\_T=\$(date +%s.%N)
3 # Do something time consuming here...
4 END\_T=\$(date +%s.%N)
5 ELAPS\_T=\$(echo "\$END\_T - \$START\_T" | bc)

Listing 4: Running a script

Listing 3: Clocking sample script

```
1 # Save as name.bsh and run with sh command
2 sh name.bsh
3 # Or just change permissions and run it
4 chmod +x name.bsh
5 ./name.bsh
```



#### Laboratory tasks I.

#### Simple problems

- Miklós BALOGH and Josh DAVIDSON
- Review on theory
- Numerical methods
- Numerical analysis
- Simple problems
- Scripting
- Laboratory
- Assignments

- Write and run a script to perform the simulation of lid-driven cavity including
  - Mesh generation
  - Simulation (in controlDict set endTime to 1)
  - Redirecting the output to a logfile
  - Plotting the time consumption of every steps of the analysis
- Visualize the results using paraFoam
  - Velocity map with vectors
  - Streamlines colored by the velocity
  - Mesh



### Laboratory tasks II.

Simple problems

Miklós BALOGH and Josh DAVIDSON

Review on theory

Numerical methods

Numerica analysis

Simple problems

Scripting

#### Laboratory

Assignments

**3** Modify the cavityGrade case and run (via bash script)

- Modify constant/polyMesh/blockMeshDict (to have a fine, graded mesh)
- Modify system/contolDict (according to the CFL)
- Create the mesh
- Map the fields from the simple cavity case
- Run the simulation

| 41       | bloc | ks  |    |   |   |   |     |    |    |     |     |    |    |               |         |     |    |
|----------|------|-----|----|---|---|---|-----|----|----|-----|-----|----|----|---------------|---------|-----|----|
| 42       | (    |     |    |   |   |   |     |    |    |     |     |    |    |               |         |     |    |
| 43       |      | hex | (0 | 1 | 4 | 3 | 9 1 | 0  | 13 | 12) | (40 | 40 | 1) | simpleGrading | (4 4 1) |     |    |
| 44       |      | hex | (1 | 2 | 5 | 4 | 10  | 11 | 14 | 13) | (40 | 40 | 1) | simpleGrading | (0.25 4 | 1)  |    |
| 45<br>46 |      | hex | (3 | 4 | 7 | 6 | 12  | 13 | 16 | 15) | (40 | 40 | 1) | simpleGrading | (4 0.25 | 1)  |    |
|          |      | hex | (4 | 5 | 8 | 7 | 13  | 14 | 17 | 16) | (40 | 40 | 1) | simpleGrading | (0.25 ( | .25 | 1) |
| 47       | );   |     |    |   |   |   |     |    |    |     |     |    |    |               |         |     |    |
|          |      |     |    |   |   |   |     |    |    |     |     |    |    |               |         |     |    |

 28
 deltaT
 0.0005;

 29
 30
 writeControl
 timeStep;

 31
 writeInterval
 200;

Miklós BALOGH and Josh DAVIDSON

2021 20 / 23



#### Assignments

#### Simple problems

- Miklós BALOGH and Josh DAVIDSON
- Review on theory
- Numerical methods
- Numerical analysis
- Simple problems
- Scripting
- Laborator
- Assignments

- How many finite volume cells are used in the performed simulation?
- 2 How many time-step is done for the cavityGraded case?
- 3 What is the mean and maximum Courant number for the cases in the last time-step?
- How many iteration step was required when solving pEqn in the first and the last time-step?
- How does the Courant number change, if the resolution is doubled and the time-step is halved?
- **6** What is the smallest cell size in case of the graded mesh?



#### Homework

Simple problems

Miklós BALOGH and Josh DAVIDSON

Review on theory

Numerical methods

Numerical analysis

Simple problems

Scripting

Laborator

Assignments

**1** Visualize the results of cavityGraded case

- Velocity map with vectors
- Streamlines colored by the velocity
- Mesh

2 Compare the results to the basic cavity case

Listing 5: Open multiple cases with paraFoam

```
# Open a case (e.g. cavity)
cd $FOAM_RUN/tutorials/incompressible/icoFoam/cavity/cavity
paraFoam &
# Open another case (e.g. cavityGraded)
# Create a file in the case directory can be handled by paraFoam
touch ../cavityGrade/cavityGrade.OpenFOAM
# Open it with paraFoam (Open item of the File menu)
```



#### Questions?

Simple problems

Miklós and Josh

Assignments

# Thanks for your attention!

Miklós BALOGH and Josh DAVIDSON

Simple problems

э 2021 23 / 23

Э