

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

Advaced meshing options Open-Source CFD Course 2021 – Lecture 3

> Miklós BALOGH and Josh DAVIDSON

> > 2021

Table of Contents

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

Resolution

1 Meshing basics

2 Mesh quality metrics

3 Mesh resolution

Finite Volume Method (FVM)

Miklós BALOGH and Josh DAVIDSON

Basics

Quality Resoluti

Importance of meshing

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

- Quality of the mesh
 - Determines the accuracy of the spatial discretization, thus
 - it has a great influence on the accuracy of the simulation.
- Components of quality
 - Type of cells (tetrahedral, hexahedral, polyhedral)
 - Resolution (near wall and gradient refinement)
- Quality measures
 - Quality metrics (aspect ratio, non-ortogonality, skewness)
 - accessible via the checkMesh utility.

Mesh quality metrics - aspect ratio

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality Resolutio

Aspect ratio

- Face aspect ratio: The ratio between the longest and the shortest length.
- Cell aspect ratio:
 - If the mesh is pseudo-2D, then it's just the ratio between the biggest and the smallest areas of the cell's bounding box.
 - If 3D, then it's the largest between the previous ratio and the result of the following expression:

$$\frac{1}{6} \frac{|a_x| + |a_y| + |a_z|}{V^{2/3}}$$

Mesh quality metrics

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality Resolution

- Cell volumes: The difference between min and max should be as small as possible (or the evolution should be as smooth as possible - not check for that).
- Mesh non-orthogonality: Measure the angle between the line connecting two cell centres and the normal of their common face 0.0 is the best.
- Skewness: Measure the distance between the intersection of the line connecting two cell centres with their common face and the centre of that face smaller is better.
- Upper triangular ordering: determines the bandwidth of the coefficient matrices.

Mesh diffusion

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality Resolutio Error from the upwind differencing scheme has a diffusion-like appearance, which arise from the numerical approximations of the convection term in the conservation equations.

top outlet: $\nabla S = 0, U = (1, 1, 0)$

Miklós BALOGH and Josh DAVIDSON

Mesh diffusion - quadrilateral mesh

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

Resolution

Quad-regular coarse

Quad-pave coarse aligned

Sac

Mesh diffusion - quadrilateral mesh

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality Resolutio

Quad-regular coarse

Quad-pave coarse aligned

Quad regular fine

Quad-pave aligned refine

(日)

Sac

Э

Mesh diffusion - triangular mesh

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

Resolution

Tri-wedge coarse

Tri-wedge aligned

Tri-wedge fine

< 日 > < 同 >

< E

э

2021 10 / 27

Sac

Mesh diffusion - triangular mesh

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality Resolutio Tri-wedge coarse

Tri-wedge aligned

Tri-wedge fine

Tri-wedge aligned refine

(日) (同) (日) (日) (日)

Mesh diffusion - polyhedral mesh

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

Poly coarse

Poly coarse aligned

Poly aligned refine

Sac

Mesh diffusion - polyhedral mesh

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality Resolutic

Poly coarse

Poly coarse aligned

Poly fine

Poly aligned refine

イロト イポト イヨト イヨ

Finite volume meshes - structured

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality Resolutio

Number of hexahedral cells: 115584

э

Finite volume meshes - unstructured prisms

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality Resolutio

Number of prismatic cells: 28284

Finite volume meshes - unstructured polyhedra

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality Resolution

Number of hexahedral/polyhedral cells: 279/14364

Mesh quality - checkMesh (stats.)

Meshing

Miklós
BALOGH
and
Josh
DAVIDSON

Basics

Quality

Mesh stats	
points:	29286
internal points:	0
faces:	99495
internal faces:	41925
cells:	28284
faces per cell:	5
boundary patches:	5
point zones:	0
face zones:	0
cell zones:	1

Mesh quality - checkMesh (cell types)

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

Overall number o	f cells of each type:	
hexahedra:	0	
prisms:	28284	
wedges:	0	
pyramids:	0	
tet wedges:	0	
tetrahedra:	0	
polyhedra:	0	

Mesh quality - checkMesh (mesh topology

Meshing Miklós BALOGH and Josh DAVIDSON

Basics

Quality

```
Checking topology...
Boundary definition OK.
Cell to face addressing OK.
Point usage OK.
Upper triangular ordering OK.
Face vertices OK.
Number of regions: 1 (OK).
```


Mesh quality - checkMesh (patch topology)

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

Resolution

Checking patch topology	for mult:	iply conne	ected surfaces
Patch	Faces	Points	Surface topology
side1	28284	14643	ok (non-closed singly connected)
side2	28284	14643	ok (non-closed singly connected)
walls	918	1836	ok (non-closed singly connected)
inlet	48	98	ok (non-closed singly connected)
outlet	36	74	ok (non-closed singly connected)

э

Mesh quality - checkMesh (metrics)

Meshing	
Miklós	
BALOGH	
and	
Josh	
DAVIDSON	Checking geometry
	Overall domain bounding box (-10 -9.99555 -1.11254) (10 9.99555 1.11254) Mesh has 2 geometric (non-empty/gedge) directions (1 1 0)
Basics	Mesh has 2 solution (non-empty) directions (1 1 0)
	All edges aligned with or perpendicular to non-empty directions. Boundary openness (-7.78764-18 -3.06399e-18 -2.95284e-16) OK.
Quality	Max cell openness = 2.2017e-16 OK.
Possilution	Max aspect ratio = 2.62246 UK. Minimum face area = 1.26311e-06. Maximum face area = 3.04966. Face area magnitudes DK.
Resolution	Min volume = 2.81052e-06. Max volume = 1.33014. Total volume = 786.54. Cell volumes OK.
	Mesh non-orthogonality max: 35.0366 average: 7.36715 Non-orthogonality check OK.
	Face pyramids OK.
	rax skewness = 0.550001 UK. Coupled point location match (average 0) OK.
	Noch OK
	Hest UK.

Law of the wall

Meshing

2021

22 / 27

Wall spacing requirements

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

- LES:
 - Wall normal direction: $y^+ < 1$
 - Streamwise direction: $x^+ < 50$
 - Spanwise/crosswise direction: $z^+ < 20$
- RANS:
 - Low-Reynolds threatment: $y^+ \approx 1$
 - High-Reynolds threatment: $30 < y^+ < 300$
 - Universal wall threatment: $0 < y^+ < 300$

Wall spacing estimation

Meshing

- Miklós BALOGH and Josh DAVIDSON
- Basics
- Quality
- Resolution

- Information about the flow:
 - Flow velocity: U_{∞}
 - Characteristic length: L or d
 - Viscosity and density of the fluid: $\nu,\,\rho$
- Estimation:
 - Reynolds number: $Re_x = \frac{U_{\infty}L}{\nu}$

• Friction coefficient:
$$C_f = \frac{0.026}{Re^{1/7}}$$

- Wall shear stress: $\tau_w = C_f \frac{\rho}{2} U_{\infty}^2$
- Friction velocity: $u_{\tau} = \sqrt{\frac{\tau_w}{
 ho}}$
- Wall normal size of the wall adjacent cell: $\Delta s_y = \frac{2\nu y^+}{u_-}$

Mesh grading

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

- Grading is based on geometric progression: a_n = a₁qⁿ⁻¹,
 where n is the number of interval.
- a_1 and a_n is the size of the first and n^{th} interval,
- q is the expansion ratio or progression (0.77 < q < 1.3).
- The edge length (sum of a_i) is: $S_n = a_1 \frac{q^n 1}{q 1}$
- In blockMesh, the simpleGrading parameter gives the progression as the last-first ratio: $\frac{a_n}{a_1}$
- In GMSH, progression should defined with the number of mesh points along the edge (n + 1) and q.

Mesh related utilities in OpenFOAM

Meshing

Miklós BALOGH and Josh DAVIDSON

Basics

Quality

- Meshing
 - blockMesh (wedge and hexahedral mesh)
 - snappyHexMesh (hex dominant polyhedral mesh)
 - foamyHexMesh (hexahedral mesh)
 - foamyQuadMesh (quadrilateral 2D mesh)
 - cfMesh (tetrahedral, hexahedral and polyhedral mesh)
- Conversion:
 - fluentMeshToFoam (from ANSYS-Fluent)
 - starToFoam (from starCD)
 - gambitToFoam (from ANSYS-Gambit)
 - cfx4ToFoam (from ANSYS-CFX)
 - ideasToFoam (from ANSYS-ans format)
- Manipulation:
 - polyDualMesh: creates the poly-dualized version of meshes
 - a lot of other tool: see this link

Useful open-source applications

Meshing

- Miklós BALOGH and Josh DAVIDSON
- Basics
- Quality
- Resolution

- GMSH (FEM and FVM mesher: GMSH web page)
- enGrid (FVM mesher: enGrid web page)
- Salome (CAD software + mesher: Salome web page)
- Blender (CAD software: Blender web page)
- FreeCAD (CAD software: FreeCAD web page)