
post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Advaced post-processing
Open-Source CFD Course 2021 – Lecture 5

Miklós BALOGH
and

Josh DAVIDSON

2021

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 1 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Table of Contents

1 Post-Processing basics

2 Run-Time Post-Processing

3 Utilities

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 2 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Why is it important?

• Post-processing CFD data is the key to
• derive the right conclusions from the numerical output,
• convert the output into interpretable form,
• present the results to decision-makers.

• Interpretable form
• graphs for quantitative analysis,
• images and videos for qualitative analysis.

• Types
• conventional post-processing occurs after a simulation,
• run-time processing is performed during the simulation.

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 3 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Tools

• External post-Processing utilities
• gnuplot, octave and python for graphs,
• paraView (paraFoam) for images,
• paraView and ffmpeg for videos.

• Builtin functionality for derived fields and quantities
• postProcess utility,

• example 1: postProcess -func ’vorticity’
• example 2: simpleFoam postProcess -func ’yPlus’

• controlDict entries for run-time post-processing,
• noise utility for aeroacoustics.

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 4 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Run-Time Post-Processing

Template for controlDict entry
functions
{

<user -defined name >
{

type <object type >;
libs (<list of library names >);
...

}
}

Example on Courant number
Co1
{

type CourantNo;
libs (fieldFunctionObjects);

// Optional entries
field phi; // Flux for the calculation
result courantNumber; // Name of output

}

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 5 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Field calculation

• CourantNo: Calculates the Courant Number field from
the flux field.

• MachNo: Calculates the Mach Number field from the
velocity field.

• Q: Calculates the second invariant of the velocity gradient
tensor.

• turbulenceIntensity: Calculates and writes the turbulence
intensity field I.

• vorticity: Calculates the vorticity field, i.e. the curl of the
velocity field.

• yPlus: Calculates the turbulence y+, outputting the data
as a yPlus field.

• Many more can be listed: postProcess -list

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 6 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Flow rate calculation

• flowRateFaceZone: Calculates the flow rate through a
specified face zone by summing the flux on patch faces.
For solvers where the flux is volumetric, the flow rate is
volumetric; where flux is mass flux, the flow rate is mass
flow rate.

• flowRatePatch: Calculates the flow rate through a
specified patch by summing the flux on patch faces. For
solvers where the flux is volumetric, the flow rate is
volumetric; where flux is mass flux, the flow rate is mass
flow rate.

• volFlowRateSurface: Calculates volumetric flow rate
through a specified triangulated surface (e.g. STL file) by
interpolating velocity onto the triangles and integrating
over the surface area. Triangles need to be small for an
accurate result.

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 7 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Forces and coefficients

• forceCoeffsCompressible: Calculates lift, drag and
moment coefficients by summing forces on specified
patches for a case where the solver is compressible, the
unit of pressure is Pa.

• forceCoeffsIncompressible: Similar to the previous, but
for incomplessible solvers, the pressure is the kinematic
pressure [m2/s2].

• forcesCompressible: Calculates pressure and viscous
forces over specified patches for a case where the solver is
compressible, the unit of pressure is Pa.

• forcesIncompressible: Similar to the previous, but for
incomplessible solvers, the pressure is the kinematic
pressure [m2/s2].

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 8 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Sampling for graph
plotting

• singleGraph: Writes graph data for specified fields along a
line, specified by start and end points.

functions
{

type sets;
libs (sampling);
writeControl writeTime;
interpolationScheme cellPoint;
setFormat raw;

setConfig
{

type lineCell;
axis distance; // x, y, z, xyz

}

sets
(

line
{

$setConfig;
start (0 0 0);
end (0 1 0);

}
);
fields (U);

}

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 9 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Monitoring min/max

• cellMax/cellMin: Writes out the maximum/minimum cell
value for one or more fields.

• faceMax/faceMin: Writes out the maximum/minimum
face value for one or more fields.

• minMaxComponents: Writes out the minimum and
maximum values, by component for non-scalar fields, and
the locations where they occur.

• minMaxMagnitude: Writes out the minimum and
maximum values, by magnitude for non-scalar fields, and
the locations where they occur.

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 10 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Monitoring numerical data

• residuals: For specified fields, writes out the initial
residuals for the first solution of each time step; for
non-scalar fields (e.g. vectors), writes the largest of the
residuals for each component.

• time: Writes run time, CPU time and clock time and
optionally the CPU and clock times per time step.

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 11 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Pressure tools

• pressureDifferencePatch: Calculates pressures onto 2
specified patch surfaces and calculates the difference
between the average pressures.

• pressureDifferenceSurface: Interpolates pressures onto 2
specified triangulated surfaces (e.g. from stl files) and
calculates the difference between the average pressures.

• staticPressure: Calculates the pressure field in Pa from
kinematic pressure by scaling by a specified density.

• totalPressureCompressible: Calculates the total pressure
field for a case where the solver is compressible (pressure is
in Pa).

• totalPressureIncompressible: Calculates the total
pressure field for a case where the solver is incompressible
(pressure is kinematic).

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 12 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Probes

• boundaryCloud: Writes out values of fields at a cloud of
points, interpolated to specified boundary patches.

• interfaceHeight: Reports the height of the interface
above a set of locations. For each location, it writes the
vertical distance of the interface above both the location
and the lowest boundary. It also writes the point on the
interface from which these heights are computed.

• internalCloud: Writes out values of fields interpolated to
a specified cloud of points.

• probes: Writes out values of fields from cells nearest to
specified locations.

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 13 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Pluggable solvers

• icoUncoupledKinematicCloud: Tracks a cloud of parcels
driven by the flow of the continuous phase.

• scalarTransport: Solves a transport equation for a scalar
field.

functions
{

s1Transport
{

type scalarTransport;
libs (solverFunctionObjects);
resetOnStartUp false;
active true;
field s1;

// Name of field to use as diffusivity , default = ’none’
nut nut;

}
}

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 14 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Visualisation tools

• streamlines: Writes out files of streamlines with
interpolated field data in VTK format.

• surfaces: Writes out surface files with interpolated field
data in VTK format, e.g. cutting planes, iso-surfaces and
patch boundary surfaces.

functions
{

isoSurfaceQ
{

type surfaces;
libs (sampling);
writeControl writeTime;
surfaceFormat vtk;

fields (U);

interpolationScheme cellPoint;
surfaces
(

isoQ100
{

type isoSurface;
isoField Q;
isoValue 100.0;
interpolate true;

}
);

}
}

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 15 / 16

post-
Processing

Miklós
BALOGH

and
Josh

DAVIDSON

Basics

Run-Time

Utilities

Post-Processing Utilities - Video creation

• Save a sequence of field data in (e.g. in ensight format).
• Save a sequence of images from the ensight files with
paraview (save animation).

• Create a video from the images in command line with
ffmpeg:

Options (not all of them are used in the final command):
Set frame -rate: -framerate 24
Set number of image from which the video will runs: -start_number 21
Set the name of source images (e.g. for image .0001. png): -i image .%04d.png
Set quality: -c:v libx264 -profile:v high -crf 20 -pix_fmt yuv420p
Set output name and format: PIP_optimized_long.mp4
ffmpeg -framerate 24 -i <images_name >.%04d.png -c:v libx264 <video_name >.mp4

Miklós BALOGH and Josh DAVIDSON post-Processing 2021 16 / 16

	Post-Processing basics
	Run-Time Post-Processing
	Utilities

