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Abstract

The wave energy conversion is a clean and inexhaustible energy source. However, under

the current power performance level, the technology has to undergo some changes in order

to be competitive. The conventional model of wave energy converter (WEC) is designed

to resonate with the frequency of incoming waves. At resonance, the velocity of the system

is in phase with the dynamic pressure and force of the wave, so that the amplitude of

oscillations linearly increases, generating a massive amount of energy. As an alternative,

the model can be oscillated by the periodic parameter with frequency twice its natural

frequency. This practice stimulates an exponential increase in the amplitude of oscillations

and explained by the phenomenon called parametric resonance. Parametric resonance

could increase the amount of generated energy, and hence improve the performance of

WEC. In this work, the phenomenon of parametric resonance is utilized on the single

degree of freedom model mimicking a simpli�ed WEC device. The model incorporates a

mass modulation as a periodic parameter and exploits its e�ect on power performance.

The parameters describing the model, such as damping and mass modulation coe�cients

have to be de�ned and optimized. Also, the long-term solution as stability diagram and

Floquet theory is suggested to simplify the complexity of the non-linear model.

Keywords: parametric resonance, mass modulation, WEC, stability, Floquet theory
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Nomenclature

This table summarizes the reoccurring abbreviations:

Notation Name

DOF degree of freedom
eq. equation
OBC oscillating body converters
ODE ordinary di�erential equation
OWC oscillating water column
PTO power take-o�
WEC wave energy converter

This table summarizes the reoccurring mathematical terms and physical quantities with
their names and units (if applicable):

Notation Name [Unit]

λ eigenvalue
µ mass modulation coe�cient [-]
ξ damping ratio [-]
ρ eigenvector
φ phase change
ω driving frequency [rad/s]
ωd damped natural frequency [rad/s]
ωf modulation frequency [rad/s]
ωn natural frequency [rad/s]
b damping coe�cient [Ns/m]
E total energy [J]
Fex excitation force [N]
I identity matrix
k sti�ness coe�cient [N/m]
m0 original mass of the system [kg]
P power [W]

T period of the system [s]
Tf period of the time-varying parameter [s]



Introduction

Wave energy is a renewable energy source with a huge potential for sustainable growth. It
is a complex �eld with a lot of rooms for improvement. The improvement can come in
many forms, the trivial solution is the size optimization of wave energy converters (WECs)
described in [1�3], another is to detect and suppress negative instability e�ects [4] or create
tuning mechanism [5�7] to heave the oscillating body in irregular seas. In addition, prediction
of available wave energy �ux along with other factors (such as weather conditions, economic
pro�tability) is vital for the design and deployment of dedicated devices [8]. In order to
succeed, a better understanding and exploitation of the device's nonlinear hydrodynamic
model can prove bene�cial to the optimization and improvements of the potential concepts.
In this work, an utilization of the parametric resonance (from nonlinear dynamics) with
time-varying inertia and its e�ect on the power output of the oscillating WECs is under
study.

There are two distinguishing types of oscillatory responses: forced oscillations and para-
metric oscillation. Forced oscillations appear if dynamical body is excited by a time-varying
external force input; and if frequency of such input close to the natural frequency of the body,
the body will be subjected to resonance. This phenomenon causes linear increase in oscilla-
tion amplitude and wildly exploited in oscillating WECs. On the other hand, if the body has
periodic parameter(s), it will result in parametric oscillations; and if frequency of periodic
parameter is about twice the natural frequency, the body will experience parametric reso-
nance. The concept of parametric resonance was discovered in the 19th century and mainly
applied (in a negative connotation) to the ships' motion [9]. Further research [10] showed
the mechanical ampli�cation (in the system's response) associated with parametric excita-
tion. Due to parametric resonance, the amplitude of vibration increases exponentially. This
fact changed the perception of parametric resonance and stimulated further developments of
mechanisms triggering instability, known as parametric resonance.

The oscillating WECs are the vibrating devices, capturing power stored in ocean waves.
The power rate is proportional to the amplitude of the oscillations, which is why in 2007 it
was suggested to apply parametric resonance to improve the performance of oscillating water
column (type of WEC) [11]. Later this work was re�ned by Orazov et al [12,13], suggesting
a novel excitation schemes. Both works show a signi�cant boost in power output.

One of the distinct parameters in the WECs is mass. Due to exposure to the ambient
water, the system has an in�nite theoretical stock of unused mass. This additional mass
can be seized and released at any time. If the mass is trapped and releases periodically as
a function of time, under certain circumstances, it could lead to parametric resonance in
the system. To discover those circumstances a single degree of freedom model close to the
dynamics of WEC was studied. A simulation considers an idealized case of a simple mass-
spring-damper model with a harmonically varying mass value. The behavior of the dynamic
system is described by the second-order di�erential equation with a periodic coe�cient,
similar to the Mathieu equation, but instead of periodic restoring force, focused on a time-
varying inertia value, which has been termed by the Carson-Cambi equation. The mass
modulation is described as the percentage of the original mass and provides the internal
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excitation to enable the occurrence of parametric resonance. The velocity, average power
output, and total energy at the di�erent modulated mass values and modulation frequencies
are recorded and used for analysis. The system will be examined by simulating the model
using numerical integration methods. Then, from the analysis of the non-linear dynamics, the
Floquet theory and Poincare Maps will be used to identify the possible regions of instability
and determine a long-term approach in parameter settings.

It is expected that a higher mass of the system gives higher power output. However,
considering the realization expenses of mass modulation in WECs, the manufacturers are
going to face the trade-o�s between the power output and the cost. It is important to de-
termine the relationships between the mass variation and the output power along with the
optimal compromise between increased energy extraction and practical engineering consid-
erations. We are planning to compare the accuracy of computed theoretical results to the
realistic scenario, determining the limits of an actual structure. Discussing size optimization
is essential for the successful development of the wave conversion industry.

Outline and objectives

The objective of this work is to present optimal mass-modulation parameter values from
power output perspective as well as from techno-economic sizing. The theoretical approach
of instability regions have to be veri�ed with numerical simulation for dedicated quantities.
Introduction to a wave energy conversion and mass-modulation schemes presented in Chap-
ter 1. Next, the phenomenon of parametric resonance and parametric resonance carrying
equations will be exploited in Chapter 2. Utilization of Floquet theory in order to determine
instability regions as a possible replacement to a long-running numerical simulations pro-
posed in Chapter 3. The details of the test case, implemented numerical simulation's values
and stability theory will be carried in Chapter 4, along with results on the performance of
the system. Finally, a number of conclusions will be drawn in Chapter 5.
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1 Conversion of the ocean energy

The world energy consumption considerably raised over the last decades and is expected to
continue growing. The increasing demand re�ects possible changes in the composition of the
economy, such as shifts to more energy-intensive industries and developing alternative inex-
haustible energy sources [14]. Ocean energy is highly predictable and is well suited to provide
baseload power [15]. The theoretical resource potential of ocean energy is su�cient to meet
present and projected global electricity demand well into the future [15, 16]. Although the
ocean energy technology is relatively new, and currently not economically competitive with
more mature technologies such as wind energy or solar energy, the interest from governments
and industry is steadily increasing [17].

1.1 Wave energy conversion

Ocean energy is complex and versatile. It is the most concentrated form of renewable energy1

on earth [18]. Ocean energy can be acquired in di�erent forms, such as thermal, mechanical,
or chemical energy. The energy we will discuss in this thesis is the mechanical energy.
Mechanical energy of the ocean is associated with generated wind on the surface of the
ocean leading to the formation of the waves; and the gravitational force of the moon that
a�ects the tides.

A device that transforms kinetic and potential energy contained in ocean waves into
useful mechanical, later electrical energy called wave energy converter (WEC). The history
of WECs is dated back to 1799 when Pierre-Simon Girard invented the �rst known device
that uses energy from ocean waves to operate the pumps and other machinery on ships [17].
More than a century later, Bochaux-Praceique constructed a device that uses wave energy to
light and power his house at Royan, France [19]. It was the �rst oscillating water-column type
of wave-energy device. Although the concept of wave power has been around for at least two
hundred years, the signi�cant attention towards the idea of wave energy conversion gained
only in the 1970s. The limited stocks of fuel caused prices to rise, as well as the appearance
of ecological and environmental problems associated with unregulated and uncontrolled fuel
consumption forced people to develop alternative energy sources [16,19,20].

Renewable energy supports a wide range of socio-economic bene�ts, including new op-
portunities for economic activity, local value creation, job creation, improved livelihoods,
gender equity and more [15]. WECs produce no gaseous, liquid or solid emissions and hence,
in normal operation, wave energy is virtually a non-polluting source [21]. However, the en-
vironmental impact from deployment of wave power schemes is varying: some of the e�ects
may be bene�cial and some potentially adverse. Nonetheless, the interest in a develop-
ment of wave power is constantly increasing and can be summarized in the United Nations
Secretary-General António Guterres statement: "Oceans, seas and marine resources are crit-
ical to sustainable development, including sustainable ocean-based economies and to the
2030 Agenda for Sustainable Development as a whole. They underpin poverty eradication

1solar energy has a density of 1.5 µJ/m3, wind energy - 0.5 J/m3, meanwhile the wave energy density
is 50 J/m3
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and food security, are a source of employment and livelihoods and support the well-being of
humans and the planet" [22].

Wave energy takes a share of up to 80% of ocean energy and considered the most
promising type, it is widely available around the world [23]. The energy density contained
in waves is the highest among the renewable energy sources [18, 24]. Waves are generated
by winds, which in turn are generated by solar energy; and while wind and solar power
devices generate power around 20-30% of the time, the wave power devices produce it up
to 90% [25]. Moreover, the solar energy intensity of typically 0.1-0.3 kW/m2 on horizontal
surface is converted to an average power �ow with intensity of 2-3 kW/m2 on a vertical
plane perpendicular to the wave direction [26]. The power in a wave is proportional to the
square of the amplitude and to the period of motion. Therefore, long period (∼ 7�10 s),
large amplitude (∼ 2 m) waves have energy �uxes commonly averaging between 40 and 70
kW/m widths of oncoming wave. Nearer the coastline, the average energy intensity of a wave
decreases due to interaction with the seabed [17]. The location of the WEC devices is usually
between 30◦ and 60◦ latitude and in deep-water below 40 meters. The WECs can provide
clean energy to power the electrical grid as well as many other applications such as propulsion
for ocean vehicles or pumping for seawater desalination [27]. The estimated power of WECs
is around 32,000 TWh/year, having the potential to reach 80,000 TWh/year [25, 28, 29].
Advancing the theoretical power output can be especially useful for temperate climate regions
directly exposed to the sea or ocean since the natural seasonal changeability of wave energy
is following the electricity demands in that climate region and can replace all alternative
energy sources [17].

Nowadays, a broad variety of WEC designs and concepts exist in a di�erent stages of
development. The classi�cation of WECs can be done in multiple ways; in [30] three main
categories are distinguished (Figure 1): (a) oscillating water columns that use trapped air
pockets in a water column to drive a turbine, (b) oscillating body converters that are �oating
or submerged devices using the wave motion (up/down, forwards/backwards, side to side)
to generate electricity, and (c) overtopping converters that use reservoirs to create a head
and subsequently drive turbines. In addition, each category can be subdivided according
to the operation principle2 (rotation/ translation), their power takeo� system (air turbines,
hydraulic turbines, hydraulic engines), their positioning within the ocean (shoreline, near
shore, o� shore), and their directional characteristics (�xed, �oating, submerged).

The power take-o� system (PTO) is a method for extracting power from a power source.
PTO is a�ecting the overall performance of WEC to deliver desired electrical energy and the
cost of the device [24]. Essentially most of the energy (∼95%) contained in waves is located
between the water surface and top 1/4 of the wave length [30]. The extraction of this energy
would depend on the PTO technology. The overtopping converters have a similar operation
to the small conventional hydroelectric power sources, therefore they can use the same low
head hydro-kinetic turbines for their PTO. The main challenge of oscillating water columns
and oscillating body converters is conversion of low-velocity motion of the device itself to
unidirectional motion by the PTO system. As a result, OWCs use air turbines for their PTO,
and OBCs utilize piston-like systems, such as hydraulic/mechanical drives, gas accumulators,
or direct drive linear generators. More detailed information can be found in [31, 32]. In the

2the technology that converts wave energy into pneumatic/mechanical energy
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(a) oscillating water column (b) oscillating body converter

(c) overtopping converter

Figure 1: Conceptual drawing of a di�erent class of WECs

review on power performance and e�cacy its been reported that oscillating body converters
have the highest e�cacy per characteristic width3 ratio, and overtopping converters have
the lowest [24]. The same report states that oscillating water columns and oscillating body
converters tend to perform better when the wave energy potential increase, while overtopping
converters seem to perform irrespective of the amount of wave energy potential. That could
be explained by the fact that the device's energy harvesting capabilities depend on wave
amplitude and the di�erence between the turbine and the height water storage.

The primary type of WEC of interest are oscillating body converters (OBC). Those
devices convert the wave force into oscillatory motions, and then the PTO system utilizes
the motion to drive a generator [12]. The device of such kind is an attenuator. It is a
long �oating device placed parallel to the predominant wave direction that is operated in
o�shore locations. It consists of multiple segments (arms) connected by joints together and
the energy generated due to the relative motion of hinged arms as the wave passes by. The
articulated joints contain piston-cylinder arrangements whose relative movements pressurize
hydraulic �uid that drives a motor connected to a generator. The generated electric power is
transmitted to shore by using subsea cables. [8,33] The movements along the prevalent length
can be selectively constrained to capture more energy. One of the most known attenuator
type is the Pelamis device (Figure 2), a semi-submerged articulated structure composed
of cylindrical sections linked by hinged joints. The wave induced motion of these joints
is resisted by hydraulic rams which pump high pressure oil through hydraulic motors via
smoothing accumulators. A 130 m long and 3.5 m diameter device rated at 375 kW is being
developed by Ocean Power Delivery [34,35].

3the part of the device that is in contact with ocean wave
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Figure 2: Pelamis Wave Energy Converter
Source: http://www.emec.org.uk/about-us/wave-clients/pelamis-wave-power/

Another common type of WEC that will be discussed is an oscillating water column
(OWC). It consists of a semi-submerged chamber opened to the sea below the waterline,
and with the air is trapped in a pocket above the waterline. With the wave approach-
ing the device, the water is forced into the chamber, creating pressure on the air within.
This air is escaping to the atmosphere through the turbine. Then, the turbine is driving
air back when the water retreats. This continuous movement generates a reversing stream
of high-velocity air, which is channeled through a rotor-blades turbine to produce electric-
ity [30]. For this applications, a low-pressure Wells turbine is often used, as it rotates in
the same direction independent of the �ow direction, which removes the need to rectify the
air�ow [27]. The main advantage of OWC is its simplicity and reliability, and the drawback
is its low-performance level, therefore the new control strategies and turbine concepts are
under development [30]. For instance, in order to increase performance, a new generation of
�oating OWC are integrated on spar buoys. The environmental impact of OWC is mainly
positive. Essentially there are no moving parts of OWC other than the air turbine therefore
sea life is not damaged, on a contrary, supported, as OWC creating an arti�cial reef. One of
the signi�cant OWC power plants is LIMPET. Opened in 2001, this power plant generates
500 kW with a single 2.6-meter diameter Wells turbine connected to a collecting chamber
made up of 3 connected tubes measuring 6x6 meters [36]. The LIMPET was constructed by
Queen's University Belfast in partnership with Wavegen Ireland Ltd.

1.2 Limitations of current wave power technologies

Due to the limited commercial experience, the current techno-economic performance of
WECs is not competitive compared to other renewable technologies. The industry needs
considerable research to make WECs economical without losing its performance, this has
to be done in an environmentally bene�cial and economically reasonable scheme. To be
competitive, the design of a WEC has to e�ciently cope with several di�culties, such as
a corrosive environment, immense loading in extreme weather conditions, randomness in
power input and low transmission frequencies [3, 17].

One of the signi�cant challenges is the conversion of the slow (∼ 0.1 Hz), random,
high-force frequencies into useful motion to drive a generator with output quality acceptable
to the utility network. As waves vary in amplitude and period, their respective power
levels vary accordingly. Whereas gross average power levels can be predicted in advance,
this variable input has to be converted into smooth electrical output and hence requires
some type of energy storage system, or other means of compensation such as an array of
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devices [27]. Moreover, the direction of the waves in o�shore locations is highly alternating.
To capture the energy of wave the device has to align accordingly on compliant moorings.
Using the phenomenon of refraction4 and re�ection5 we can largely determine the directions
of waves near the shore. The irregularity in wave amplitude, phase, and direction signi�cantly
complicate the design of the device, yet another challenge is to mitigate the highly corrosive
environment of devices at the water surface [24,37].

To operate e�ciently, the device and corresponding systems have to be rated for the most
common wave power levels (∼30�70kW/m), as well as withstand extreme wave conditions
that occur very rarely, but could have power levels in excess of 2000 kW/m [27, 38]. The
economic dilemma comes from the fact that whilst the normal output of the device (and the
revenue) produced by the most commonly occurring waves, the capital cost of the device
construction is driven by a need to withstand the high power level of the extreme, yet
infrequent, waves [39]. The device based on nominal operating conditions is cheaper, but
its life expectancy is shorter compare to more costly WEC that could withstand severe
conditions. The problem of the design choice could make the WEC an economic failure [37].

We also have to keep in mind that, whereas small-scale wave energy plants are likely to
have minimal environmental impacts, some of the very large-scale projects that have been
proposed have the potential for harming ocean ecosystems. Covering very large areas of
the surface of the ocean with wave energy devices would harm marine life and could have
more widespread e�ects, by altering the way the ocean interacts with the atmosphere. Wave
power plants act as wave breakers, calming the sea. While this is often a desired e�ect in
many harbors the result may be to slow the mixing of the upper layers of the sea which
could adversely impact marine life and �sheries [25].

1.3 Mass-modulation in wave energy devices

As was mentioned before, the current techno-economic performance of WECs has to be
improved in order to compete in the market. It is believed that taking advantage of sur-
roundings, more precisely the ambient water holds the opportunity to enhance the energy
harvesting capabilities of WEC devices. The implementation, as mass-modulation schemes,
is a relatively new concept �rst introduced by Orazov et al in [12] and continued in [13,40].
The proposed excitation schemes extend the idea of applying the mass of surrounding water
as ballast, and in addition, produce mechanical ampli�cations6.

The wave excitation schemes could be linked to the parametric excitation of an oscillator.
The seminar paper by Rugar and Gütter [10] describes how parametric excitation can pro-
duce mechanical ampli�cation in response to resonator. This ampli�cation has been already
implemented in variety of microelectromechanical system oscillators, detailed in [41�43], and
explored for OWC devices in [11]. The novel excitation scheme proposed by Orazov et al
mimics a square wave modulation of the mass of OBC devices, such as Wavebob and Pelamis.

4as the wave travels from deep into shallower water near the shore, it is refracted from its original
direction of travel to an angle more normal to the shoreline

5the wavelength of the water wave gets shorter proportional to the wave fronts proximity
6increase in magnitude of mechanical quantities
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The mass intake machanism is normalized against the occurring wave's period and consists
of 4 steps: the system traps the water at the �rst quarter of a period and releases it at
the second quarter of a period; then the system traps the water again at the third quarter
of a period and releases the water once more at the fourth quarter of a period [12]. This
changes in a water level can be described with sinusoidal wave. The �gure below (Figure 3)
illustrates the typical period of the water intake system's motion:

Figure 3: Illustration of the operation of the water intake mechanism
Source: http://me.berkeley.edu/~bayram/wec/water_intake_animation.html

The system in Figure 3 is composed of exposed at both ends, constantly submerged
hollow cylinder (2) �xed to the surface �oat (1) that is excited by upcoming waves. In the
middle point of cylinder (3) two pairs of butter�y �aps (4) and (5) are hinged. The lower
pair of �aps (5) can only move from horizontal ("closed") to nearly vertical down ("open")
position, while upper pair of �aps (4) only move from horizontal ("closed") to nearly vertical
up ("open") position. There is also a horizontal plate (6) outside of the cylinder sliding
up and down due to the water pressure and depending on the wave's motion. As the plate
passes midpoint (3) it can lock or unlock the �ap pair in open position. The red arc on the
�aps indicate locked pair. The mechanism is arranged to hold at most one set of �aps in
closed (unlocked) position. The added mass (7) termed µM is the mass of the system M
multiplied by the mass coe�cient µ, where µ could be any number between 0 and 1. The
�ow of the incoming water (8) is pictured by the stream lines and the surface level of the
ambient water (9) is depicted by the cosine wave.

At point (a) at the graph on top in Figure 3 the sliding plate (6) goes below the midpoint
(3) as the water amplitude (9) is at its highest, locking lower pair of �aps (5) in the open
position and unlocking upper pair (6). As the system moves up (along with wave), the upper
�aps (4) will slide downward (to complete closed position) due to the higher pressure above
them than below. The water will be trapped in the upper part of the cylinder, causing added
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mass e�ect.

At point (b), the direction of motion is reversed. As the water amplitude is decreasing,
the entire system is accelerating downwards. The sliding plate (6) is moving up relative to
the cylinder, but the lower �aps (5) are still locked until point (c) of a cycle. The upper
�aps (4) slide up due to higher pressure below them, allowing the water to pass down.

At point (c), the mechanism continues to accelerate downwards, along with the wave
amplitude, reaching its maximum vertical velocity. The plate (6) moving upwards, locking
upper �aps (4) and unlocking lower �aps (5). The lower �aps (5) take horizontal (closed)
position due to pressure di�erent blocking water in the lower part of the cylinder (2), leading
to the e�ect of the added mass. The plate (6) reaches a completely up position at a point
(d).

At point (d), the system starts accelerating upwards and the wave amplitude is increas-
ing as well. That causes lower �aps (5) to open and the upper �aps (4) are still locked by
the plate (6). The water passes through the system, removing any additional mass. The
sliding plate moving down relative to the cylinder (2) reaching middle (3) at the point (a)
of the next cycle.

Note that the sliding plate (6) is acting inertial, it is moving relatively the cylinder while
its absolute position remains nearly stationary. Those mass excitation schemes are applicable
for the devices suitable for active changes in a mass (and thus natural frequency). The water
intake and disposal would happen rapidly twice per cycle. The intake is happening at points
(a) and (c), while disposal at points (b) and (d). The cycle keeps repeating. In his early
work [12], Orazov et al analyzed the simple one degree of freedom model. Later the two
degrees of freedom simulation was performed in [44]. Both simulations showed improvement
of power with growth of the mass modulation coe�cient µ and at the optimal damping.
However, further increase of mass modulation coe�cient comes at the cost of increased
system complexity and possible impulse loading at instances where the mass changes [44].
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2 Mechanics of wave energy converters

This chapter is dedicated to providing the necessary theoretical knowledge along with used
mathematical equations to build the numerical simulation. The main focus is to explore the
phenomenon of parametric resonance and determine the governing equations for the system.

2.1 Power output

The signi�cant factors in the prevalence of one WEC device over another are its e�cacy
and the power output. The e�cacy of the system is the ratio of absorbed power and power
available within device width. The number mostly depends on the type of WEC, such that
the device with the higher width in contact with ocean wave is going to be at a disadvantage
compared to a shorter-width WEC absorbing the same amount of power.

The second characteristic value is the captured power rate. Power is a scalar quantity
de�ning the amount of energy converted per unit of time. The general de�nition of power:

P =
dW

dt
=

d

dt
(Fx) (1)

where power P is the rate of work done W with respect to time t, whereas the work can be
described as a product of force F and the displacement x. From the fundamental theorem
of calculus, the equation (1) can be simpli�ed to:

P = Fv (2)

where F is force applied at the system and v is the velocity in the direction of applied force.

Due to the periodic excitation, the velocity (and, hence, power rate) will vary within a
cycle, as a result, instead of normal power (1) average power7 will be used:

P =
∆W

∆t
=

1

n

n∑
i=1

bnv
2
n (3)

The equation (3) is pointing out the dependency of power on damping b and velocity v of the
body. This last part of the equation derived from the fact that in many vibrating systems
the frictional force Ff de�nes the power rate and it's proportional to the product of damping
coe�cient b and velocity of the system v:

Ff = bv (4)

Whereas e�cacy depends on the sizing of the WEC device, the power output could be
improved using the solution provided in Section 2.2.

7power averaged over a cycle
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2.2 Parametric resonance

The peak performance of most oscillating water columns (OWC) occur at the frequency
resonant with incident wave frequency, so that the velocity of an oscillating body is in phase
with the dynamic pressure and force of the incoming wave [11]. This results in substantial
transfer of energy from the incident wave to the device. At resonant frequency oscillations
tend to increase linearly within time until damping suppresses further growth. This makes
resonance a desirable feature for many PTO systems. For the oscillating body converters
(OBC) whose model is under study, the e�cacy of the energy absorbed can be signi�cantly
improved too, when the system is at resonance with incoming wave [24]. However, if the
system is excited at the parametric resonance, it has oscillations increasing exponentially.
Compare to normal resonance, this phenomenon received far less attention, that could be
explained by the complexity of mathematical models of non-linear problem [4].

Resonance

Every system has a certain frequency at which in absence of any driving force or damping
it tends to oscillate freely. The frequency of this vibrations is called natural frequency. The
oscillation of a free vibrating8 system is recessed due to damping. It is a dissipation of energy
stored in oscillation due to internal friction of surrounding air molecules. If a periodic force
applied to the system, it's called forced system [45]. The forced system starts to oscillate with
the frequency of applied force, and continue unless applied force is removed. A resonance is
the phenomenon that occurs when the frequency of a periodically applied force is close or
equal to a natural frequency of the dynamic system and leads to an increase in amplitude.
The resonant frequency is a frequency at which the amplitude's magnitude is at its relative
maximum. Due to the storage of vibration energy, even small periodic forces close to the
system's resonant frequency are capable of producing high amplitude oscillations. Essentially,
resonance is mechanism that generates practically all sinusoidal waves and vibrations.

The resonance occurs extensively in nature and is exploited in many engineering �elds,
for instance to generate vibrations of a speci�c frequency in musical instrument. Many sound
we hear, like the struck of hard objects such as metallic, glassy or wooden, are caused by
resonant vibration within an object. Resonance can be observed at the playground swings,
which act as a pendulum. If a swing is pushed multiple times with the period equal to
the natural interval of the swing (its resonant frequency), the swing will go higher and
the amplitude will keep increasing due to the maximized energy absorption by a swing. If
pushing will be slower or faster than the natural interval of the swing, the produced arc will
be smaller and the amplitude will decrease.

Consider externally excited damped mass on a spring. The system in Figure 64 is one
degree of freedom system subjected to harmonic excitation.

The behavior of this system can be characterized by the Newton's second law in a form:

mẍ+ bẋ+ kx = Fex (5)

8no external force to drive the system
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Figure 4: Spring-mass-damper system

where m is the mass, b is the viscous damping, and k is the spring's sti�ness of the system.
The displacement of body m described by x is going to be back and forth repeatedly about
its mean position. This repetitions come in the regular interval T and characterized by the
natural frequency of the system ωn:

T =
2π

ωn
(6)

Note that the natural frequency of damped and undamped systems vary. The displacement

from the equilibrium point derived with respect to time gives velocity of the system ẋ =
dx

dt
,

and its acceleration ẍ =
d2x

dt2
. The system is driven by externally applied sinusoidal force:

Fex = F0 sin(ωt) (7)

where F0 is the driving amplitude and ω is the external forcing frequency.

In Figure 5 the displacement of the system (4) is depicted. In the �rst frame we can see 2
characteristic oscillations: damped (b 6= 0) and undamped (b = 0). Both oscillations belong
to free vibration system (Fex = 0). The blue line shows the undamped system oscillating
with it's natural frequency (ωn):

ωn =

√
k

m
(8)

The amplitude9 of oscillations remains constant as t → ∞. While, in case of damped
unforced system (red line) the oscillations are decaying, hence the amplitude is decreasing
after each period approaching zero as t→∞. The intensity of the decay depends on damping
coe�cient: the system with higher damping tend to decay faster. The damping can be rated
with damping ratio:

ζ =
b

2mωn
(9)

If ζ = 0, the system is undamped, and if 0 < ζ < 1, system is going to have dumped
vibrations. If ζ ≥ 1 the system will be overdamped. Overdamped system would not show
any oscillations due to fast energy dissipation. The natural frequency of system with damper
depends on undamped natural frequency and damping ratio:

ωd = ωn
√

1− ζ2 (10)

9largest deviation from equilibrium point (peak)
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Figure 5: Di�erent types of oscillatory behavior

The second frame (Figure 5) shows the behavior of externally excited system with and
without damping. Forced oscillations occur when an oscillating system is driven by a periodic
force that is external to the oscillating system [46]. The response to the imposed driving
depends on driving amplitude and driving frequency. Forced system has two oscillations
combined: due to natural frequency and due to forcing. Without damping (blue line), the
behavior of forced system is similar to free vibration system (has no decay). Although, the
displacement (and amplitude) will be higher due to external excitation. The displacement
of the forced system with a damper (red line) decreases, since the vibrations due to natural
frequency getting absorbed by a damper. But, if the damping ratio (ζ) is between 0 and 1,
the oscillations remain: after vibration due to natural frequency dissolves, the system keeps
oscillating by external excitation at the forcing period.

The last frame in Figure 5 illustrates the resonance. The system has natural frequency
ωd and it is externally excited by Fex. If the forcing frequency close or equals to natural
frequency (ω ∼= ωd) the response of this system is shown with blue line. The oscillations of
such system are growing linearly in time due to resonance. However, what will happen if the
system is excited by a time-varying parameter, such as m(t)? This practically means that
mass of the system is a function of time. And, under certain conditions we could achieve
exponential growth in oscillations shown with the red line.
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Parametric resonance

Parametric resonance is an instability phenomenon caused by time-varying changes in the
parameters of the system [47]. The equation of motion of such system will be:

m(t)ẍ+ bẋ+ kx =0, or

mẍ+ b(t)ẋ+ kx =0, or

mẍ+ bẋ+ k(t)x =0

where parameters m(t), b(t), k(t) depend only on time, and not on the state of system. This
parameters will vary periodically with the period Tf , and if its frequency ωf :

ωf =
2π

Tf
(11)

close or equals to twice the natural frequency (ωf ∼= 2ωn), the system phase-locks to the
parametric variation and absorbs energy at a rate equivalent to the energy it already has.
Without compensating energy-loss mechanism, provided by damper b, the amplitude of
oscillations will grow exponentially, as shown in Figure 6:

Figure 6: Oscillations of system (4) at the parametric resonance

The �rst to notice that the system excited by force of double its frequency was Michael
Faraday in 1831. His work [48] studied crispations10 in a open container partially �lled with
liquid and excited vertically to generate waves with frequency half the driving frequency.
The variation in system's parameters comes from changing wetted surface (of container)
due to approaching ripples. Another observation was maid by Froude [9]: the ship sailing
in a ocean produce a roll motion, and can be parametrically excited by the other motions
in a ship. The roll angle increases rapidly if the period of the ship is in resonance with
a period of incident waves, and the ship experiences so-called parametric roll. Parametric
roll is a type of parametric resonance, when the large oscillations come in roll motion [47].
Parametric resonance is detrimental for the ships, it could endanger the ship, its crew, and
the cargo. Nowadays, there are examples of accidents with container vessels that caused
damage worth millions of euro's [49,50], such as APL China (1998), Maersk Carolina (2003)
and etc. The World Shipping Council estimates the loss of around 1000 containers per year

10ripples on a wave surface
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due to parametric rolling motion [51]. More misfortune would be a cruise ship experiencing
parametric resonance, since the cost will be human lives. Thence numerous studies are
devoted to detect and suppress the parametric resonance, such as [47,49,50,52�54].

Similar to the ships, the other o�shore �oating structures are subjected to e�ect of
parametric resonance. The in�uence can be positive as well as adverse. There are works
describing the negative e�ect of parametric resonance in WEC [4, 55�57], since the energy
in primary motion mode transfers into other modes, resulting in less available energy for
conversion. Whereas, other papers feature positive e�ect of parametric resonance on the
power performance of the WEC (for instance, [11�13,40] and the references therein).

While the conventional oscillating WEC were designed to resonate with the peak fre-
quency: such resonance would cause a linear increase of oscillation amplitude, the mass mod-
ulation technique triggers parametric instability, causing the parametric resonance. The [11]
features the e�ect of parametric resonance on performance of OWC. The incident water
acts as a natural excitation of the device, since it generates a periodic pressure signal at
the lowest point of the body. The e�ect of this water can be viewed as forced oscillation.
The alternative way suggested by [11] is to excite mechanical model by periodic variation
in parameters which describe such model. Out of all the parameters, it appeared the most
practical to vary the volume of the device. The way how mass modulations take advan-
tage of the �uid environment and incident waves can be viewed as a form of parametric
excitation [40]. The occurrence of parametric resonance leads to an exponential increase of
oscillation amplitude, providing the possibility to extract additional power. In [11] the mass
alternation happens in the two-quarter cycles (four times), featuring the system with trapped
ballast at the beginning of the period and the descending water level to its equilibrium level
at the �rst quarter of the period. The system starts trapping the ballast once more reaching
an absolute at the end of the second quarter. Then, the process repeats. At the end of the
period, the water level reaches its initial value. The proposed mass-modulation is di�erent
from the one used within this work mainly by the initial state of the mass of the device,
that could be explained by the choice of di�erent WEC model. The results of [11] show
that the energy is transferred more e�ciently by the parametric resonance rather than due
to external excitation. The exponential growth of the amplitude provides instant response
for any initial perturbation and the actual maximum amplitude is greater than the actual
amplitude of the system subjected to resonance.

In works [12,13], Orazov et al used numerical simulations to determine power improve-
ment. The de�ning arguments were the damping b and mass modulation coe�cient µ.
However, the mass modulation frequency was not taken into consideration. This work is
going to feature the Mathieu and Carson-Cambi equations that will denote the periodic
parameter de�ned by mass modulation coe�cient and mass modulation frequency.

2.3 Mathieu Equation

When one encounters with parametric resonance in a body, the Mathieu's equation is useful
tool to understand its mathematical model [47]. The Mathieu's equation is a second order
di�erential equation introduced by Émile L. Mathieu in 1868 [58]. This equation describes
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the vibrational movement in the stretched membrane with elliptical boundary [59]. When
transforming the two dimensional wave equation

∂2V

∂x2
+
∂2V

∂y2
+ c2V = 0 (12)

into elliptical coordinates, the Mathieu di�erential equation was obtained:

d2x

dt2
+ (a− 2q cos 2t)x = 0 (13)

where a and q are the real coe�cients.

The Mathieu equation describes a wide range of phenomena in nonlinear vibration the-
ory. Various mechanical and structural dynamical systems described by elliptical geometry
can be accurately and realistically modeled; including wave propagation in pipes, oscillation
of water in a sea, and in �oating vessels [60].

The boundary condition of the equation (13) re�ects the periodic nature of the trigono-
metric term cos 2t:

x(t) = x(t+ π), (14)

Nowadays, we are using simpli�ed version of equation (13) in a form:

ẍ+ (δ + ε cosωt)x = 0 (15)

where δ and ε are the real coe�cients, and the term cosωt is a parametric excitation. This
linear di�erential equation commonly occurs in nonlinear vibration problems in two di�erent
ways: (i) in systems with periodic forcing and (ii) instability studies of periodic motions in
nonlinear autonomous systems [61].

An example of (i) is a pendulum with support periodically forced in a vertical direction
(Figure 7a), that has governing di�erential equation:

ẍ+

(
g

L
− Aω2

L
cosωt

)
sinx = 0 (16)

where g is gravitational acceleration, L is the length of the pendulum support and amplitude
Aω2

L
= ε. The general form of parametric excitation is de�ned by the term sinx, where x

is the angle of de�ection. In order to drive the system by a smooth continuous sinusoidal
wave (Figure 7b), the vertical motion described by ε cosωt is approximated by a piece-wise
constant function (Figure 7c). This would practically mean that when x ≈ 0, the sinx
expands in a Taylor series:

sinx ≈ x− x3

3!
+
x5

5!
− x7

7!
+ ... (17)

and when x ≈ π, the term sin(x+ π) = − sinx expands in a Taylor series:

− sinx ≈ −x+
x3

3!
− x5

5!
+
x7

7!
− ... (18)
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Figure 7: Vertically excited simple pendulum

This linearization (17,18) returns in piece-wise oscillation:

ẍ+ (δ + ε cosωt)x =0 for 0 < t < T/2

ẍ+ (δ − ε cosωt)x =0 for T/2 < t < T

where δ =
g

L

For the case (ii), it is known that the solution of (15) results in (δ, ε)-plane consists of
regions of stability (s) and instability (u) bounded by curves on which there is a periodic
solution [62], as shown in Figure 8. The unstable zones (u) form "tongues" attached to the δ-
axis at δ = s2, s = 0, 1, 2, ... . To determine the transition curves between stable and unstable
regions numerous methods, including two variable expansion perturbation method [63] and
Floquet theory, could be applied.

Figure 8: Ince�Strutt diagram of Mathieu equation: s - stable region, u - unstable region
Source: https://aapt.scitation.org/doi/10.1119/1.5021895

Damped Mathieu equation

The Mathieu equation describes parametric perturbations in the displacement of the system.
The previous case (15) neglected damping e�ect on the system and reduced the problem to
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a broader class of periodic di�erential equations, termed Hill equation:

ẍ+ p(t)x = 0 (19)

where periodic function p(t) = δ + ε cosωt and p(t) = p(t+ T ) for all periods of T .

However, the natural damping exists in all non-linear systems and can be introduced in
Mathieu equation:

ẍ+ bẋ+ (s2 + α + ε cosωt)x = 0 (20)

where b, α, ε are small and δ = s2 + α.

In the damped Mathieu equation for a given value of b there is a minimum value of
ε necessary for instability to occur [61]. The approximate curves for s = 1, 2, 3 and c =
0, 0.2, 0.4, 0.8 are depicted in Figure 9. The tongue s=1, which for b = 0 (solid line) emerge
from the δ-axis, for b > 0 (dashed line) becomes detached from δ-axis. Note that, if the
b > 0, the exact curves for di�erent values of s should not cross the δ-axis. This prediction
was veri�ed in [61] for a �xed b and varrying δ and ε parameters. Due to this condition,
the domain of the "tongues" (in Figure 9) arti�cially restricted. For the detailed solution
see [61, 62].

Figure 9: Approximate curves for varying s, b parameters [62]

2.4 Carson−Cambi Equation

The Carson-Cambi equation is another variation of a periodic di�erential equation, that
di�ers from the Mathieu equation (15) with the time-varying coe�cient associated with the
second derivative:

(1 + ε cos t)ẍ+ px = 0, |ε| < 1 (21)

where p and ε are the real coe�cients.

In the theory of frequency modulation (where ε � 1), utilizing [64, 65], the solution of
the equation (21) is to replace it by Mathieu's equation (15) in a form:

ẍ+ p(1− ε cos t+ 0(ε2))x = 0 (22)
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for which an extensive literature exists [66]. Another approach is to apply quantitative
analysis to determine how "strong" the stability-instability is for given parameters p, ε
described in [67]. Thus, will result in qualitative (on/o�) information. To determine solutions
corresponding to speci�c initial conditions, numerical simulation has to be done. The results
have been compared with perturbation analysis [66] and the method proved to be more
convenient. However, it also showed that the approach should not be used for |ε| > 0.4.

To begin quantitative analysis the term t has to be substituted t = 2τ , where τ has
periodicity of π. The Carson-Cambi equation will take a form:

ẍ+ 4p(1 + ε cos 2τ)−1x = 0 (23)

where ẍ = d2x/dτ 2 and (1 + ε cos 2τ)−1 is an even, periodic function

Note that the stability analysis is independent of the sign of ε, such that if we substitute
t = −t̃+ π and ε = −ε̃, we get

(1 + ε̃ cos t̃)ẍ+ px = 0 (24)

equation similar to (21) [67].

Introducing the Fourier expansion for even, periodic function

ẍ+
4p√

1− ε2

{
1 + 2

∞∑
n=1

[
−ε

1 +
√

1− ε2

]n
cos 2nτ)

}
x = 0 (25)

and replacing x(τ) = ebτz(τ), the result is

z̈ + 2bż +

{[
4p√

1− ε2
+ b2

]
+ 2

4p√
1− ε2

∞∑
n=1

[
−ε

1 +
√

1− ε2

]n
cos 2nπ)

}
z = 0 (26)

The quantitative stability analysis of the Hill equation (detailed in [68]) transforms equation
(26) to

z̈ + 2bż + {a2n + 2qφ(τ)}z = 0 (27)

where φ(τ) is a periodic function with period π. Therefore, the solution of equation (27),
according to [68],

φ(τ) =
∞∑
n=1

a2n cos 2nτ, (28)

where

a2n =

[
−ε

1 +
√

1− ε2

]n
= an2 ,

q =
4p√

1− ε2
,

a = q + b2

(29)
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From the following, the solution of actual parameters can be calculated:

ε = a2[1 +
√

1− ε2] =
−2a2
1 + a22

p =
q

4

√
1− ε2 =

q

4

1− a22
1 + a22

(30)

The stability of solutions (29) and (30) can be determined as an eigenvalue problem.
Given p and ε determine b in stability diagram. The �nal results must be used in inverse
sense, for instance, if b is positive real solutions x(τ) will be unstable as z(τ) is periodic
and the value b shows how "strong" the exponential factor is. If b is purely imaginary, the
solution x(τ) will be periodic, i.e. stable. The detailed stability analysis will be discussed in
the Chapter 3.
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3 Stability of solutions

This chapter is dedicated to the the fundamental characteristics of stability of the system
and possible ways to solve it, such as the eigenvalues, Poincaré Diagram, and Floquet the-
ory. The term stability usually refers to the stable and unstable solutions of di�erential
equations; and trajectories of dynamical systems. A stable solution is an important, and
often desirable property of a dynamic body subjected to small, unpredictable disturbances.
Even tiny perturbations could eventually cause a large alternation from the equilibrium if
the system is unstable. On the other hand, this signi�cant deviation can be used to enhance
the power output. Whereas in the stable systems, the oscillations have initially high ampli-
tude after some period of time settle at the low, close to 0, values, in the unstable systems,
the oscillations have an exponential increase in amplitude. In other words, for the unstable
system, the absolute velocity and displacement values are increasing in time and since the
power is directly proportional to the velocity, it increases alongside.

In mechanics, the stability of the system can be determined using the system's potential
energy function. For a single degree of freedom system, the second derivative test can be
used in the following way:

∂2V

∂q2
= λ, where

{
λ < 0 for stable solutions

λ > 0 for unstable solutions

The V is the static equation of motion and q is the system's degree of freedom (DOF). If the
λ = 0 or solution does not exist, the system is in neutral equilibrium and the higher order
derivatives must be examined.

In Figure 10 the stability is described in terms of a ball that is either on the hill or in the
valley. The unstable system has a positive feedback, like when the ball stands on top of the
hill. Although it is stable at the moment, even small perturbation will make gravitational
forces act in the same direction with the ball movement (positive feedback) to push the ball
farther from its undisturbed position. On the other hand, when the ball is in a valley, the
system is stable and has a negative feedback. Therefore, the gravitational forces will act in
the direction opposite to the ball displacement to return the ball to its undisturbed position.
When the ball is in the saddle point, it will nearly remain in equilibrium if displaced a small
amount, in other words, it is asymptotically stable. The ball approaches equilibrium at some
point in time, and losses it at another, the feedback will depend on initial conditions.

There are various methods to solve the stability problem. A general method would
involve Lyapunov functions, where the point near equilibrium is under study. If the point
starts out near an equilibrium point and remains there forever the system is Lyapunov
stable. However, there is no general technique for constructing Lyapunov functions, the
speci�c case has to be studied independently. Locating Lyapunov functions is a complex
question, therefore it is more favorable to reduce the task to a well-studied problem involving
eigenvalues of matrices.
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Figure 10: Potential energy stability test [69]

3.1 Stability and eigenvalues

Eigenvector and eigenvalue are the speci�c characteristics of a square matrix originally used
to study principal axes of the rotational motion of rigid bodies. They are fundamental in the
linear transformation analysis as well as prominently used in a wide range of areas of linear
dynamics [70]. The study of eigenvectors and eigenvalues of the matrix is called spectral
analysis.

An eigenvector of an n× n matrix M is a nonzero vector ρ in a scalar �eld Rn, that

Mρ = λρ (31)

where λ is an eigenvalue. An eigenvalue of M is any scalar such that the equation 31 has a
nontrivial solution, but unlike eigenvectors, eigenvalues may equal to zero. Eigenvertors get
streched, shrunk or re�ected upon matrix multiplication. When the linear transformation T
is applied, the eigenvector of T gets scaled by an eigenvalue λ, however the direction of ρ
remains the same. This condition can be written as the equation:

T (ρ) = λρ.

In order to �nd solutions for eigenvector and corresponding eigenvalue, the equation 31 will
be written in form:

(M − λI)ρ = 0, (32)

where I is the n×n identity matrix and ρ 6= 0. Therefore, the matrix (M −λI) cannot have
an inverse and the equation, where the determinant of matrix:

det(M − λI) = 0 (33)
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called characteristic equation. The eigenvalues are reducing a 2-dimensional problem to a
couple of 1-dimensional problems, that each set of solutions is bounded to 1 DOF. The
number of solutions of eigenvalues coincide with the size of the matrix, in this case λ =
{λ1, λ2, λ3...λn}. Since M is a real matrix, its eigenvalues and corresponding eigenvectors
can be real numbers or a complex conjugate pairs. For the real λ, the solution is stable if
all associated λ < 0; and unstable if all associated λ > 0. For the complex λ, the stability is
characterized by the real part of eigenvalue Re(λ) < 0, for stable; and Re(λ) > 0 for unstable
solutions.

As was mentioned earlier, the principles of eigenvectors and eigenvalues frequently uti-
lized in stability theory. For instance, a dynamical system described by ordinary di�erential
equations, ẋ = f(x, t), consist of the real state vector x and di�erentiated with respect to
time t. The real vector-function f depends on the variables and initial conditions x(t0) = x0,
providing existence and uniqueness of solutions on semi-in�nite interval of time t ≥ t0. If the
vector-function f does not depend on time explicitly, the system is autonomous, otherwise,
non-autonomous [71]. The system with two parameter (x1 and x2), such as:

ẋ1 = ax1 + bx2

ẋ2 = cx1 + dx2

where a, b, c, d are the coe�cients, can be written in a form:

ẋ = Ax, (34)

where A is a state-transition matrix:

A =

[
a b
c d

]
The state transition matrix is used to obtain the generalized solution of linear dynamical
systems. The product of A with the state vector x at initial time t0 gives x at period of
time t. The characteristic equation for a state matrix A (applying equation 33) is:

λ2 − (a+ d)λ+ (ad− bc) = 0 (35)

and the solution for the eigenvalues will be:

λ1,2 =
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

2
(36)

if (a + d)2 ≥ 4(ad − bc), the associated eigenvalues are real numbers, otherwise it will be
complex numbers.

3.2 Stability and trajectories

A path that system (with mass) in motion takes through space as a function of time is called
trajectory, and by Hamilton mechanics is de�ned by position and momentum vectors [72].
The motion of a particle can be described by the second order ODE:

mẍ(t) = −∇V (x(t)), (37)
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where position vector x = [x, y, z] and ∇V is the potential gradient11. Trajectories of the
dynamical system can be geometrically represented in a phase portrait, that each set of
initial conditions associated with a di�erent curve/point. In this case, the eigenvalues have
the same meaning as the slope of a line in phase portrait.

The Poincaré Diagram (Figure 11) illustrates the stability of solutions of trajectories of
a body under small perturbations of initial conditions. A relationship between determinant
and trace of the any matrix and its eigenvalues:

det(A) =
n∏
i=1

λi (38)

Tr(A) =
n∑
i=1

λi (39)

can be used to describe the classi�cations of phase portraits in the (detA, TrA)-plane. The
x-axis represents the determinant of matrix (detA) and the y-axis is the matrix trace (TrA),
the matrix discriminant is ∆ = (TrA)2 − 4detA.

Figure 11: Poincaré Diagram: Classi�cation of Phase Portraits in the (detA, TrA)-plane
Source: Gimp, Stability Diagram, 4/2/2018, Freesodas

Di�erent phase portraits depicted in Figure 11 can be categorized in: generic cases,
borderline cases and other special case. The generic cases are the following:

- if det(A) < 0 ⇒ saddle point
- if det(A)>0 and ∆ > 0 ⇒ spiral sink/source
- if det(A)>0 and ∆ < 0 ⇒ nodal sink/source

11local change rate of potential due to displacement
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The trajectories of unstable solution move out ("source") to ∞ for t → ∞ and approach
0 for t → −∞, the trace would be positive (Tr > 0), whilst stable solution's trajectories
approach ("sink") 0 for t → ∞ and move out to ∞ for t → −∞ and the trace would be
negative (Tr < 0). The borderline cases consist of the following:

- if Tr(A)=0 and det(A) > 0 ⇒ center
- if Tr(A) 6= 0 and det(A) = 0 ⇒ line of �xed points stable/unstable
- if det(A)>0 and ∆ = 0 ⇒ degenerate sink/source

When the matrix A = λ and λ 6= 0 it is the other special case called stable/unstable star,
depend on whether λ < 0 or λ > 0.

As t → ±∞, each trajectory exhibits one of only four types of behavior. The useful
tool to understand the long term behavior of a dynamical system is a limit set. Limit set
is the state that dynamical system reaches after an in�nite amount of time has passed, by
either going forward or backwards in time [73]. In the [73], four di�erent types of stability
of a limit sets are distinguished: stable but not asymptotically stable, asymptotically stable,
unstable and non-stable. The limit set L is stable if all nearby trajectories stay nearby,
and asymptotically stable if all nearby trajectories are attracted. On contrary, if all nearby
trajectories (except trajectories in L) are repelled, the limit set L is unstable. Nevertheless,
if at least one nearby trajectory is attracted, and if at least one nearby trajectory is repelled,
the limit set L is non-stable. All the pairings of stability types are mutually exclusive, apart
from the asymptotically stable limit set which is also stable. The "non-stable" de�nition is
used to consider reverse-time dynamics of the system. An unstable limit set is asymptotically
stable in reverse time, however, non-stable limit set remains non-stable in reverse time.

Poincaré Maps

The Poincaré map, also known as the �rst recurrence map, is one of the techniques to
analyze the continuous dynamical system. From [71], a periodic system described by a
nonlinear system of ODE:

ẋ = f(x, t) (40)

where x is a real vector of n dimension, and f(x, t) is a periodic function of time t with a
period T > 0, that is f(x, t+ T ) for any x and t. A solution of this system is periodic if

x(t) = x(t+ T ) (41)

Assume that f(x, t) is a smooth function of x and continuous function of t. Instead of the
nth-order continuous-time system12, such as ẋ = Ax, Poincaré map presents the (n− 1)th-
order discrete-time system13, such as x(n + 1) = Ax(n). This order reduction and the fact
that it acts as a bridge between continuous- and discrete-time systems makes Poincaré map
convenient instrument in the analysis of stability [74]. To construct a Poincaré map, one has
to trace the state of the system at pn through the �ow map ϕ over period of T to the next

12has an in�nite number of points between any two points in time
13the values of the variables are occurring as the distinct, separate points in time
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mapping point pn+1:
pn+1 = ϕ(pn) (42)

Any two Poincaré Maps for a periodic orbit are conjugate to each other. For practical
problems, Poincaré Map is usually conducted using numerical simulation, where the Poincaré
cut/section has to be well-de�ned by initial conditions. The behavior exhibited on the map
can be whether:

- stable, if the periodic solution pn+1 = pn, or
- unstable, if the periodic solution pn+1 6= pn, hence |pn − pn+1| > |pn+1 − pn|

The principles of Poincaré map are used to identify stability regions in Floquet theory.
The practicality of the solutions comes from the fact that instead of looking at the entire
dynamical trajectory of the system, we are going to look at the "map" from one period to
the next, as shown in Figure 12:

Figure 12: Poincaré map of a periodic system [71]

3.3 Floquet theory

Floquet theory, �rst introduced by Gaston Floquet in [75], is the study of the stability of
linear periodic systems in continuous time (equation 40,41). To solve the Floquet theory, we
are going to follow Grimshaw [76] along with Seyranian and Mailybaev [71]. Let consider a
linear periodic system of ordinary di�erential equations:

ẋ = A(t)x (43)

where x is an n-dimensional vector and A(t) is n × n matrix which entries are continuous
or piecewise continuous functions on (−∞,∞). Assume that the equation (43) is going to
have n linearly independent solutions x1(t), x2(t), ..., xn(t) that satisfy the initial conditions

xi(0) = ei, i = 1, 2, ..., n (44)

where ei is the ith column of the n×n identity matrix I and the solutions satisfying the initial
conditions: x(0) = x0 = (x01, x02, ..., x0n). Then, solution of the equation (43) satisfying the
initial condition x0:

x =
n∑
i

x0ixi(t) (45)
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where xi(t) are the vector functions14 with the period of T. The vector xi(t) can be written
as columns of the n× n real matrix X(t) = [x1(t), ...xn(t)], hence:

x(t) = X(t)x0 (46)

The matrix X(t) satis�es the equation

ẋ = A(t)x

with initial condition
X(0) = I (47)

and is called the principal fundamental matrix. Note that the principal matrix A(t) with
period T that de�nes the state of the stability of solutions, is also periodic with period kT
for any integer k, hence A(t+ kT ) = A(t) for all t. Then, according to [77]:

X(t+ T ) = X(t)B (48)

where B = X(T ) is a non-singular constant matrix; from induction:

X(t+ kT ) = X(t)Bk (49)

Moreover, using Wronskian theorem:

detB = exp{
∫ T

0

TrA(s) ds} (50)

Although, the A(t) has periodically-varying parameters, the solutions are typically non-
periodic and rarely found in a closed-form [76]. If equation (48) is true for all t, the constant
matrix B can be expressed in terms of fundamental matrix at t = 0:

B = X−1(0)X(T ) (51)

and if X(t) is chosen to be principal fundamental matrix, so that X(0) = I, and then:

B = X(T ) (52)

Here matrix X(t) taken to the period t = T is called Floquet matrix or monodromy matrix15,
and the matrix operator B represents the Poincaré map pn+1 = ϕ(pn) for periodic system.

Let's consider the eigenvalue problem for Floquet matrix

Bρ = λρ (53)

where ρ is an eigenvector and λ is an eigenvalue. Since columns of the B are linearly
independent (detB 6= 0), the eigenvalues λ 6= 0. Then the equation (53) yields a particular
solution of the discrete dynamical system de�ned by Floquet matrix:

x̃(kT ) = Bkρ = λkρ (54)

14the domain is a subset of the real numbers and the range is a vector
15Monodromy is the transformation of an object when enclosing it along a nontrivial closed path; the

fundamental meaning of monodromy comes from "running round singly".
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After each period, the solution (54)is multiplied by Floquet multiplier λ. The Floquet
multipliers are the eigenvalues of a monodromy matrix B (de�ned by equation (48) or(51))
that provide period-to-period increase/decrease of the perturbations:

ρi = eλiT , i = 1, 2, ..., n (55)

where ρi is the eigenvector of the matrix, called Floquet exponent, determines the long-
term behavior of the system. While Floquet exponent has a unit of time−1 and Floquet
multiplier is a dimensionless number, both provide the growth rate of di�erent perturbations
averaged over a cycle [78]. If the |λ|>1, the norm of solution (54) exponentially increase with
increasing term k, whereas the |λ|<1, causes the norm to decrease with increasing term k.

The equation (54) describes discrete system that has l linearly independent solutions,
and according to Jordanian chain16:

x̃1(kT ) =Bkρ0 = λkρ0

x̃2(kT ) =Bkρ1 = λkρ1 + kµk−1ρ0

...

x̃l(kT ) =Bkρl−1 =

min(k,l−1)∑
i=0

Ci
kλ

k−iρl−i−1, Ci
k =

k!

i!(k − i)!
, for k = 0, 2, 3...

(56)

The general solution of discrete system de�ned by Floquet matrix can be contracted
taking a linear combination of solutions (54) and (56) for all the multipliers λ and corre-
sponding Jordanian chains. As the result, the following criterion of stability for discrete
system are obtained:

� Linear periodic system (43) is asymptotically stable, hence, (||x(t)|| → ∞ as t → ∞
for all solutions ẋ(t) if and only if |λ| < 1 for all Floquet multipliers.

� Linear periodic system (43) is stable, hence, all solutions ẋ(t) are bounded as t→ +∞
if and only if |λ| ≤ 1 for all Floquet multipliers with some multipliers having the unit
absolute value |λ| = 1

� Linear periodic system (43) is unstable, hence, there is a solutions ẋ(t) that is un-
bounded as t→ +∞, if and only if there is a Floquet multiplier |λ| > 1

According to [71], if linearized periodic system (43) is asymptotically stable (|λ| < 1), then
the periodic solution x̃(t) of nonlinear periodic system is asymptotically stable; and if
linearized periodic system (43) is unstable (|λ| > 1), then the periodic solution x̃(t) of
nonlinear periodic system is unstable. The case when |λ| ≤ 1 for all the multipliers with
some multipliers lying on the unit circle |λ| = 1, the stability property can be a�ected by
non-linears, therefore stable solutions of linear system does not necessarily lead to the same
property for the non-linears.

16a number of linearly independent eigenvectors is less than the algebraic multiplicity
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4 Test case

The WEC is a mechanical device that harvests energy stored in an ocean wave. The ex-
tracting power rate regimented by the PTO technology. For direct mechanical drive PTO
systems, the primary function is to translate the mechanical energy of an oscillating body
subjected to waves into electricity [79]. During the operation, an oscillating body will change
its mass by capturing and ejecting water from its �oats.

Before any construction of an experimental device, the suggested water intake system
has to be simulated numerically to discover its performance potential. To show the e�ciency
of the mass modulation schemes, the simplest possible model have to be developed and
analyzed. Assuming a continuous dynamical approach, a single DOF mass-spring-damper
with a harmonically varying mass model will be used to approximate the perturbation in
the system. The behavior of this system can be described by the second-order di�erential
equation, similar to the Mathieu equation (15), but with a periodic coe�cient in inertia
second derivative speci�ed by the Carson-Cambi equation (21).

The model has arbitrary parameters, such as initial mass and spring coe�cient, and a
set of values for parameters such as damping and modulation coe�cient. The optimization
requires using numerical integration for the whole range of values and tuning the model up
to most bene�cial, yet practical use. The evaluation will be conducted in terms of power
output and consists of 3 steps:

(i) A notionally common model has to be detected and the performance of such model
carefully analyzed. This model will serve as a reference for the future power perfor-
mance estimations.

(ii) The dynamics of the parametrically excited model have to be investigated. The con-
ditions for the parametric resonance have to detected and reached. Additionally, the
limits of the excitation have to be discussed and a realistic threshold settled.

(iii) A further analysis of the system has to be made in order to determine its long-term
behavior. From the analysis of the non-linear dynamics, the Floquet theory will be
used to identify the possible regions of instability and the results will be veri�ed by
numerical integration of the system.

4.1 Model set-up

The developed model of WEC will be similar to a linear oscillator and consists of single
DOF mass-spring-damper system, shown in Figure 13. According to the works of Salter and
Chiang [80,81], a PTO system could be simulated with a damping element, respectively the
measured power is the one contained in the damping term. The e�ect of the incident waves
is modeled by an external harmonic motion. The aim of the model is to investigate how the
power collected from the PTO varies with time-dependent mass modulation.
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In Figure 13 we can see that the mass of the system varies with time t, and oscillated
by externally applied periodic force Fex (eq. (7)):

Fex(t) = F0 sin(ωt),

and the internal time-varying parameter M(t):

M(t) = M0 sin(ωf t) (57)

where ωf is a mass modulation frequency. The amplitude of oscillations M0 is de�ned by
the mass of the system m0 and the mass modulation coe�cient µ:

M0 = µm0 (58)

essentially, means that the µ is a dimensionless number acting as a percentage of original
mass m0.

Figure 13: Schematic for a single DOF model of WEC

Taking all of the above, the governing equation for the mathematical model of the
oscillating body:

m(t)ẍ+ bẋ+ kx = Fex (59)

where damping coe�cient b de�nes PTO rate, spring coe�cient k is related to the natural
frequency, and m(t) is a mass of the system. The periodic parameter m(t) consists of the
original mass of the system m0 and the time-varying term M(t):

m(t) = m0 +M(t) = m0 + µm0 sin(ωf t) (60)

and the period of this parametrically excited system:

Tf =
2π

ωf
(61)

The power will be measured at every time-step by damping coe�cient b and associated
velocity ẋ:

P = bẋ2 (62)

and then averaged:

P =
1

n

n∑
i=1

bnẋ
2
n (63)
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The averaging happens over second half of the simulation17 to allow initial transients to
decay and any resonance to develop.

Model parameters

The system (59) has a simulation running time t = 100 seconds and an arbitrary chosen
parameters listed in Table 1. The model is also considering modi�cations in parameters
listed in Table 2, by varying them throughout an array of di�erent simulations, in order to
investigate its e�ect on the power output and optimize the system.

Table 1: Invariable parameters for the given simulation model

Notation Name Value Unit

ω driving frequency 0.7 rad/s
F0 amplitude of external forcing 1 N
k spring constant 1 N/m
m0 initial mass of the system 1 kg

Table 2: The set of parameters varied across di�erent simulations

Notation Name Range Unit

µ mass modulation coe�cient 0.01...0.3 -
ωf mass modulation frequency 0.1...3 rad/s
b damping coe�cient 0.001...1 Ns/m

Model normalization

To determine the e�cacy of the parametric resonance in the model a normalization has to
be made. Normalization is adjusting measured values on the mass modulated model to a
notionally common model. A simulation of an additional model that has constant mass
(m = m0) is made as a baseline case, therefore the results from the time-varying mass cases
are normalized against this baseline model. The governing equation of model:

mẍ+ bẋ+ kx = F0 sin(ωt) (64)

This model is used to show power factor - correlation between power of system with and
without mass modulation:

n =
Pm

P c

(65)

where Pm is averaged power of model with periodic mass and P c is averaged power of model
with constant mass.

17e.g. for the 100 second simulation, the values after 50 seconds passed will be taken into account
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In some cases, normalization will refer to more sophisticated adjustments with the in-
tention to bring entire values into alignment. To be speci�c, a comparison to the model
at resonance. As was already mentioned, conventional WEC is designed that the natural
frequency of such device resonates with incident wave frequency. The model will have same
equation (64) as "common model". This model will be tuned with an optimum damping
coe�cient to extract the maximum possible power. The mass of the model will be constant.

4.2 Stability analysis with Floquet theory

The equation under study is the equation of the system (59) without periodic forcing (Fex =
0):

m(t)ẍ+ bẋ+ kx = 0 (66)

The oscillations due to forcing Fex are neglected in order to transform the problem to the
�eld of linear dynamics, where the solutions of stability are de�ned. However, in the futher
analysis the e�ect of external excitation on stability of parametrically excited system will
be shown using numerical simulations. The mass of the system m(t) is periodic with time t,
such that m(t+ T ) = m(t) for all t. Note that the T in this case (and further) is the period
of parametric excitations, hence

T = Tf =
2π

ωf
(67)

The system's mass can be expressed by constant term m0, mass modulation ratio µ and
mass modulation frequency ωf :

m(t) = m0(1 + µ sin(ωf t)) (68)

The periodic mass term m(t) classi�es equation (66) into Carson-Cambi equation (21). To
solve and determine stability regions, the equation has to be transformed into a damped
Mathieu equation and then apply Floquet theory.

The damped Mathieu equation (20) is the regrouped equation (66) of the system:

ẍ+
b

m(t)
ẋ+

k

m(t)
x = 0 (69)

for simplicity, we are going to write it in a form:

ẍ+ p1(t)ẋ+ p2(t)x = 0 (70)

where the coe�cients p1 and p2 are periodic, hence p1(t) = p1(t+ T ) and p2(t) = p2(t+ T ).
Note that, if p1 = 0 the equation (70) is reduced to the Hill's equation (19).

To utilize the Floquet theory, the equivalent �rst-order system of equations (x1 = u, x2 =
u̇) has to be formed:

ẋ1 = x2

ẋ2 = −p1(t)x2 − p2(t)x1
(71)
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The general form for a linear homogeneous system with periodic coe�cient is here 2 × 2
matrix:

ẋ(t) =

[
ẋ1
ẋ2

]
= A(t)

[
x1
x2

]
(72)

where state-transition matrix:

A(t) =

[
0 1

−p2(t) −p1(t)x2

]
= 0 (73)

The fundamental matrix X(t) such that X(0) = I (47):

X(0) =

[
u1 u2
u̇1 u̇2

]
(74)

where u1 and u2 are linearly independent solutions such that

u1(0) = 1 u2(0) = 0

u̇1(0) = 0 u̇2(0) = 1
(75)

The constant matrix B (51) can be expressed in terms of fundamental matrix by putting
t = 0, and X(0) = I

B =

[
u1(T ) u2(T )
u̇1(T ) u̇2(T )

]
(76)

where u1u̇2 − u2u̇1 6= 0 for all t. The eigenvalue for the Floquet matrix B (equations (32)
and (53)):

(B − λI)ρ = 0

The characteristic multipliers λ are the eigenvalues of B and can be given by equation (33):

det(B − λI) = det

(
u1(T )− λ u2(T )
u̇1(T ) u̇2(T )− λ

)
= 0 (77)

Since B is 2× 2 matrix, we are going to have 2 eigenvalues λ1 and λ2 in a form:

λ1,2 = Re(λ1,2) + Im(λ1,2) (78)

The system is discrete and due to the presence of secular terms, there are unbounded solutions
growing as a power of time. The stability will be measured within a unit circle, where
|λ1,2| > 1 is for unstable solutions and |λ1,2| ≤ 1 is for stable or asymptotically stable solutions.

4.3 Results and Discussions

A simulations of the model (59), (64), and (66) have been executed using the parameters
listed in Tables 1 and 2. The initial conditions for each simulation case [ẋ0 x0] will be
provided and the outcome of the simulations will be presented step by step in the next
sections.
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(i) Baseline case

To evaluate the performance of parametrically excited WEC, �rst, the maximum power
potential of the model with constant parameters (64) (refer to as common model) has to
be detected. In regards, a numerical simulation of power at di�erent damping b and forcing
frequency ω values was computed for the initial conditions [0 0] for the velocity and the
displacement of the system. The outcome of the simulation is shown in Figure 14. Note,
that by equation (9), (10) the damping coe�cient is bound to b ≤ 2: if the value exceeds 2,
the damping ratio ζ gets higher than 1, and the system would show no oscillatory response.

Figure 14: Numerical simulation for the common model (64)

Generally, the power is a product of force and velocity, and in the case of WEC, an
oscillating body is stimulated by a dynamic pressure (and, hence, force) of the incoming
wave. This force is absorbed by a PTO system that is modeled as a damping element.
Altogether, the power distribution depends on damping and velocity, whilst the velocity gets
suppressed with a damping coe�cient as well. Therefore, as the damping increases the power
has a rapid growth until its optimum damping value (bopt) is reached and later, at higher
damping (b > bopt), the power will only decay (see Appendix 27). In Figure 15, the contour
plot of power as a function of forcing frequency and damping is shown. The damping and
power have logarithmic scale, so that the nature of the power is more visible. The power
has its maximum as the damping gets less than 0.05 and this solution is bounded by forcing
frequency ω = 1.
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Figure 15: The contour plot of the power at di�erent ω − b settings for the common model (64).
Note that the damping and power values are presented in a log10 scale.

From the common model simulations (Figure 14 and 15) running for 100 second a
highest power output P c = 7.47 happens at the damping bopt = 0.03 and forcing frequency
ω = 1. Note that the natural frequency of the system ωd = 1 and from the de�nition, this
substantial transfer of power is caused by the resonance. At the optimum set of parameters
(Figure 16.2) the oscillations grow linearly reaching amplitude dmax = 25 after simulation
running for 100 seconds. A detailed view on oscillations of a common model for a di�erent
parameter values is shown in Figure 16. Both 16.1, 16.2 and 16.3 are at resonance with
natural frequency. However, in 16.1 the power rate is low due to low damping coe�cient
and the oscillations take more time to build; in 16.3 the damping coe�cient is so high, that
it suppresses the e�ect of resonance. Another case, 16.4, is re�ecting forced oscillations, but
a non-resonant, and has signi�cantly less power output compared to resonant cases.

In Figure 16.1 and 16.2, it is visible that the power output keeps growing, and although,
the highest power output P c = 7.47, if simulation time is increased the outcome may change.
In Figure 17, the same model (64) had a numerical simulation for t = 1000 sec and the
averaged power for 17.2 settles at a certain value, while in 17.1 the power keeps growing
along with amplitude of the oscillations.
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Figure 16: Oscillatory response on the given parameters and averaged power for simulation time
t = 100 sec.

Figure 17: Oscillatory response on the given parameters and averaged power for simulation time
t = 1000 sec.
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(ii) Mass modulation case

The next step is to perform a simulation of model (59) with varying inputs from Table 2. The
initial conditions are the same, as for common model: [0 0]. The outcome of simulation is
shown as a contour plot of power factor and displacement in Figure 18 and 19. The power
(Figure 18) is normalized against no mass modulation model (64) and the displacement d
of such model is speci�ed at Figure 19. Although the simulation was running for a wider
range of variables, the desired e�ect is achieved on a certain scale. For instance, the power
factor n is signi�cantly higher at the lower damping values and the modulation frequency ωf
twice the natural frequency ωd. By the de�nition, this performance is caused by parametric
resonance. Nevertheless, at the high damping coe�cients, the parametric resonance has no
e�ect, because the energy dissipates at a higher rate than forms, and perturbations decay.

As the mass coe�cient µ increases, the power factor n grows along. Note that at some
frames (Figure 18) the logarithmic scale log10(n) is used in order to detail the numerical data
over a wider range of values. The results show a considerable rise at a very small damping
coe�cients (b < 0.1). The simulation shows that the system could achieve a power factor
n = 105 at b = 0.001. This is due to the idealized model18 of the system. The displacement
contour plot (Figure 19) for the same system shows that the amplitude of the oscillations gets
to 2500 [m] and continue growing, whilst the common model has a displacement amplitude
d = 2.7 [m]. In reality, such excessive amplitudes would not be reached due to nonlinear terms
bounding the in�nite growth, which are not present in the simple linear model examined here.
The contour plot for the velocity of the system is provided in the Appendix 28.

Figure 18: Power output factor at the di�erent damping rate

18without any losses
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Figure 19: Displacement at the di�erent damping rate

From Figure 18 the highest power output was determined along the modulation fre-
quencies, i.e. the maximum power and associated modulation frequency ωf . Thereon that
modulation frequency, the averaged power distribution Pm as a function of the mass mod-
ulation coe�cient µ is shown in Figure 20. Note that for the b < 0.2 the associated (with
maximum power) modulation frequency ωf and the natural frequency ωd in proportion 2:1,
and this does not hold for b ≥ 0.2 due to high suppression rate.

Figure 20: Power and amplitude of oscillations comparison in terms of mass modulation coe�cient
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Comparing to the common model (Figure 14) with the maximum power P c = 7.47, for
the mass modulation case close or greater power is detected at b ≤ 0.01. This decision is
guided by the power output presented in Figure 20. The performance of the model at frames
6, 7, 8, 9 are insu�cient compared to the common model, therefore, considering using these
models is not pragmatic.

In Figure 21 the power distribution at the dedicated damping range (0.001 < b < 0.01)
and modulation frequency ωf = 2 is shown. The increase in mass modulation coe�cient is
leaning towards rising in power. As for the power versus damping coe�cient, the distribution
is similar to a common model and shown in Appendix 29.

Figure 21: Averaged power distribution at b = (0.001 : 0.1) in terms of mass coe�cient

The maximum power has an unrealistic rise after simulation was run for a long time,
however at the moderate time the improvements that the system experiences are practical.
Let assume a realistic threshold for absolute displacement dmax = 25; this is a maximum
amplitude of the oscillations at the resonance for a common model (see Figure 16 frame
2). Applying a threshold to the system with parametric resonance (Figure 20), and at the
0.005 < b < 0.05, the wide distribution obtained (Appendix 30). However, the main focus is
on the values higher than the maximum power output P c = 7.47. This leads to the optimum
parameter values (Figure 22 and 23):

� for the mass modulation coe�cient µ = 0.17 at the optimum damping bopt = 0.009 the
maximum averaged power is 32.6% of the common model,

� as the µ = 0.2 and at bopt = 0.008 the maximum averaged power is 73.6% of the
common model, however

� as the µ = 0.25 and at bopt = 0.008 the maximum averaged power is 587% of the
common model, and even further

� as the µ = 0.3 and at bopt = 0.001 the maximum averaged power is 2193%, which
is over 20 times greater than the performance of the common model. However, the
design complexity and realization cost for such model will be signi�cantly higher (if
possible at all) compared to let say µ = 0.2.

The design of the model gets more sophisticated, if it is projected for a larger mass, therefore,
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choosing the greatest modulation coe�cient may not be the best option.

(a) 3D view (b) (damping-power) plane

Figure 22: Scatter of the µ − b parameter values in terms of power limited by the P c. Note that
power is in logarithmic (log10) scale.

Figure 23: The performance gain in (log10) scale during the increase of mass modulation coe�cient.

(iii) Stability analysis

The numerical simulation proved to be a useful tool to analyze the dynamics of the WEC
model, however, in order to understand the long-term behavior of the solution, the stability
and instability regions have to be detected. The Floquet theory analysis is used to explore the
stability from one-period simulation. This will su�ciently decrease the simulation running
time and opens an opportunity to introduce other parameters of the non-linear model.
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Applying the Floquet theory on model (66) with the modulation frequency ranged in
Table 2, and initial conditions in (75), the analysis practices a higher modulation coe�cient
range µ = 0.01...0.5 in intend to discover the prolonged behavior of the system. Since the
phenomenon of parametric resonance causes unstable behavior of the system, the designated
instability regions are depicted in red at the Floquet map (Figure 24 and Appendix 31).
Note that previously undetected parametric resonance at b = 0.2 appears at the higher mass
modulation coe�cient. This leads to the conclusion that the instability is present even at
the larger damping b > 0.2, merely on the superior µ.

Figure 24: Floquet map for stable (green) and unstable (red) regions of periodic coe�cient (µ−ωf )

From the Floquet map (Figure 24) the de�ned points are chosen for a closer check-up
(Table 3). The unforced system (66) was running for 200 second in order to determine oscil-
lations' behavior, and further comparison to Floquet analysis. Additionally, the oscillations
of the forced system (64) were detected and plotted. The result is presented in Figure 25.
The unforced oscillations (66) displayed with blue line and forced (59) - with red.

Table 3: Parameter values and its stability according to Floquet map

b µ ωf stability b µ ωf stability

1 0.001 0.1 2 unstable 10 0.05 0.1 2 stable
2 0.001 0.2 2.1 unstable 11 0.05 0.2 2.1 unstable
3 0.001 0.45 2.2 unstable 12 0.05 0.45 2.2 unstable
4 0.005 0.1 2 unstable 13 0.1 0.1 2 stable
5 0.005 0.2 2.1 unstable 14 0.1 0.2 2.1 stable
6 0.005 0.45 2.2 unstable 15 0.1 0.45 2.2 unstable
7 0.01 0.1 2 unstable 16 0.2 0.1 2 stable
8 0.01 0.2 2.1 unstable 17 0.2 0.2 2.1 stable
9 0.01 0.45 2.2 unstable 18 0.2 0.45 2.2 unstable
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Figure 25: Forced (red) and unforced (blue) oscillations at designated (µ− ωf ) points

Figure 25 proves that the unforced system has the same stable/unstable regions as in
the Floquet map. Moreover, the stability regions of the forced system are inevitable due
to the forcing element. However, at some points, e.g. 18, the stability mode is not certain
looking at Figure 25, therefore a higher simulation time is required to detect parametric
resonance (Figure 26). This comes at the cost of complexity of simulations and accuracy of
results, which has to be decreased in order to �nish the simulation.

Figure 26: Forced (red) and unforced (blue) oscillations within 1000 seconds running time at µ = 0, 2
and ωf = 2.2
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5 Conclusion

In this work, the phenomenon of parametric resonance was utilized to increase the perfor-
mance of the WEC. Despite that the phenomenon was discovered in the 19th century, its
application in the WEC devices is a relatively new concept. Few studies have been made
suggesting mass modulation as a periodic parameter in the WEC system. The mass mod-
ulation would happen using the ambient water, the �uid capture and release would happen
evenly twice per natural period of the system. The WEC is a complex device, that has
lots of non-linear terms. However, at the earlier step, the simpli�ed mass-spring-damper
model can be used, where the damper is representing PTO. Based on that, the numerical
integration and stability diagram for the single DOF model was performed and the power
output recorded and inspected.

The power is dependent on the damping: if the damping coe�cient is too high, then
the motion of the system will be limited, and a small amount of power will be produced,
nonetheless, if the damping coe�cient is too low, then the damper absorbs little of energy,
hence the power capture is lower. Therefore the tuning and optimization methods have
been suggested. Overall, the preliminary results show signi�cant improvement of the power
rate at parametric resonance compares to other cases of parametric oscillations as well as in
comparison to the system at resonance. Within the simulations, few regularities have stood
out, e.g. that the stability is not a�ected by forcing term, hence forced and unforced models
will have the same outcome if the parameter values are intact. Also, that the system tends to
have higher output at the higher modulation coe�cient, i.e. more mass (and hence inertia)
needs to be added and subtracted from the system over a cycle to increase a power output.
However, this improvement is limited by the complexity of the design and realization costs
of such model.

The methods used to investigate the performance both have positive and negative points.
Due to the simpli�cation of the model, i.e. single DOF, the numerical integration seem easier,
as it does not require broad knowledge in linear/non-linear dynamics and stability analysis.
This method exploits the technical facilities and presents readable results. However, as the
complexity gets closer to an original WEC device, the system will have more non-linear
terms and parameters, and those will a�ect the simulation running time and accuracy of the
results. Also, with borderline cases, shown in Floquet map, e.g. the oscillations in Figure
26, the necessary time to detect the resonance increases. Further work has to implicate
the stability theory along with numerical simulations, where stability map could de�ne the
search area and numerical integration at the designated area could de�ne actual results.

The real waters rarely exhibit ordinary conditions, instead, the amplitude of the waves
along with their velocity (frequency) changing regularly. The next step in the utilization of
parametric resonance in WEC devices would be to increase the number of DOFs and adapt
to the wave behavior. Perhaps, a wide range of forcing frequencies have to be used to mimic
the irregular nature of the waves.
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Appendix

Figure 27: Averaged power distribution due to damping at ω = 1

Figure 28: The absolute velocity of the system (64) at di�erent damping b compared to the velocity
of common system v
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Figure 29: Averaged power distribution due to damping at µ = 0.2 and ωf = 2

Figure 30: The maximum power output as the system reaches realistic threshold of absolute ampli-
tude dmax = 25. The power is in log10 scale.
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Figure 31: Stability analysis using Floquet theory; stable zones depicted with green and unstable -
with red
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