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Abstract 
 

In this document, experimental results from previous work were analyzed then 

used in order to model a waveflume in OpenFoam. The theories are firstly 

studied to extract all the essential parameters that are necessary to justify the 

good use of the numeric model. A specific case was used in the intermediate 

water waves field. It was found that, despite the use of the laminar type of 

simulation, the extrapolation method and the Wheeler stretching method are not 

describing well the results obtained by the simulation. Further work on different 

type of simulations must be made to confirm or invalidate the previous 

assessment.  
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Nomenclature: 
 

• CFD : Computational Fluid Dynamics 

• WEC : Wave Energy Converter 

• NWT : Numerical Wave Tank 

• t : time (s) 

• ρ : density (kg.m-3) 

• u : velocity vector (m.s-1) 

• p : pressure (Pa) 

• fb : body force (N) 

• e : energy per unit mass (J.kg-1) 

• qs : rate of heat transfer per unit area [W.m-2] 

• qv :  is the rate of heat sink per unit area [W.m-2] 

• τ :  is the stress tensor [Pa] 

• ν is the kinematic viscosity [m²/s] 

• FSE :Free Surface Elevation  

• η : FSE [m] 

• H: the height [m] 

• λ: the wavelength [m] 

• T : the time period [s] 

• d: the water depth [m] 

• a: the wave amplitude [m] 

• F: the frequency of the wave [Hz]               

• ω : the angular frequency [rad/s]          

• k: the wave number [m-1]                          

• s : the wave steepness  

• PIV : Particule Image Velocimetry 

• VOF :Volume of Fluid method  

• FVM :Finite Volume Method 

• α : volume fraction 
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Figure 1 The global wave energy resource [18] 

 

1 Introduction 
 

The growth of the earth’s population is intrinsically linked to the access of 

energy. Fossil energies are massively used due to the ease of extracting them 

and converting them. However because of this intense use of fossil energies, the 

environment is getting polluted. In the wake of a massive extinction, we need to 

find environmentally friendly solutions to get energy from renewable sources. 

Among them, wave energy has a high potential. Fed by the wind, which is fueled 

from the sun, the density of power of the waves is of the order of 40-60 kW/m 

as it is shown in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

In order to extract the energy from the waves, many Wave Energy Converters 

(WECs) are currently under studies, but to optimize the energy conversion, it is 

crucial to understand the wave kinematics. Therefore a set of experience was 

conducted in the university of Plymouth, UK, in order to validate wave theories 

such as Wheeler stretching.  

High resources are needed in order to carry out a real experiment. Therefore it is 

now common to use a numerical method to model the reality. Indeed numerical 

models provide high resolution solutions, repeatability. Moreover real 
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experiments are subject to errors due to, for instance, measurement errors, 

mechanical errors. Numerical models use wave theories in order establish a 

solution, but some theories are not fully validated. Thus both real and numerical 

models have to be compared in order to validate theories. For this study 

OpenFoam is used because it is a free opensource software that requires less 

resources than for instance Fluent.  

The aim of this project will be to develop a Numerical Wave Tank (NWT) 

replication of the experiments carried out in Plymouth, to provide validation of 

the modelling of a wave flume in OpenFOAM. This paper will compare the results 

of the real experience and the NWT by looking at the different velocity profiles 

and the free surface elevation. The first part will tackle the issue of explaining 

which wave theories will be used and which will be under study as well as an 

overview of previous studies made on the NWT. Then the NWT will be entirely 

explained, indeed many conditions must be fulfilled in order to use the results of 

the simulation on the waves. Finally, the results will be compared from the real 

experiment and the simulation. 
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2 Mathematical formulation of the physical problem  

2.1 Governing equations 

2.1.1 Basic equations 
 

The equations leading to the understanding of the phenomenon rely on several 

law of physics [1] : 

• Conservation of the mass, which states that the mass of a closed system 

remains constant over time : 

𝜕𝜌

𝜕𝑡
+  𝛻 ∙ (𝜌𝒖) = 0 

Where ρ is the density, u is the velocity field. 

In particular in our case, we can consider that the fluid is incompressible. 

The equation becomes then 

  

𝛻 ∙ 𝒖 = 0 

• The conservation of the linear momentum (2nd law of Newton). In 

particular, for our case of study, the equation that’s results of this law is 

𝜕𝜌𝒖

𝜕𝑡
+ 𝛻 ∙ (𝜌𝒖𝒖) = −𝛻𝑝 + 𝒇𝒃 

                                           

Where fb is the body force. 

 

• The first law of thermodynamics, which states that the energy of an 

isolated system remains constant 

𝜕

𝜕𝑡
(𝜌𝑒) +  𝛻 ∙ (𝜌𝒖𝑒) = −𝛻 ∙ 𝑞𝑠 − 𝛻 ∙ 𝜌𝒖 +  𝛻(𝝉 ∙ 𝒖) + 𝒇𝒃 ∙ 𝒖 + 𝑞𝑣 

Where e is the energy per unit mass, qs is the rate of heat transfer per unit area 

across the area of the material element, qv is the rate of heat sink or source 

transfer within the material volume per unit volume and τ is the stress tensor. 
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2.1.2 Navier-Stokes equations 
 

The Navier-Stokes equations express mathematically the conservation of 

momentum and the conservation of the mass for Newtonian fluids. It has been 

written as follows: 

𝜕

𝜕𝑡
(𝜌𝒖) +  𝛻 ∙ (𝜌𝒖𝒖) = −𝛻𝒑 + 𝛻𝝉 + 𝜌𝒇 

Where : 

• t is time [s] 

• ρ is the density of the mixture [kg.m-3] 

• u is the velocity field [m.s-1] 

• p is the pressure [Pa] 

• τ is the deviatoric stress tensor, also known as Cauchy stress tensor       

[N.m-2] 

• f represents body accelerations on the continuum 

For this study, we consider that f=g where the only acceleration considered is the 

gravity. 

For incompressible fluid, the equation becomes 

𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ 𝛻)𝒖 −  𝜈 = −

𝛻𝒑

𝜌
+ 𝒈 

Where ν is the kinematic viscosity. 

2.1.3 Wave characterization 
 

A basic wave can be characterized by a sinusoidal variation of the Free Surface 

Elevation (FSE). Therefore this basic wave can be defined by some variables as 

shown in the picture below:  

 

 

 

 

 



14 
 

Figure 2 Definition of wave parameters over a basic wave 

 

 

 

 

 

 

 

 

 

 

We can list the characteristics of the wave: 

• H [m] : the height, which is the distance between the crest and the trough 

of the wave 

• λ [m] : the wavelength, which represents the distance between two 

identical spatial points of the wave 

• T [s] : the time period, which is the time for the wave to repeat. 

• d [m] : the water depth  

• a [m] : the wave amplitude 

Besides, to fully characterize a wave, we need to calculate those different 

parameters: 

• F [Hz] : the frequency of the wave             𝐹 =  
1

𝑇
 

• ω [rad/s] : the angular frequency              𝜔 =  
2𝜋

𝑇
 

• k [m-1] : the wave number                        𝑘 =
2𝜋

𝜆
 

 

• s : the wave steepness                      𝑠 = 𝑘 ∗ 𝑎 

  

d 



15 
 

Figure 3 Le Méhauté diagram [19] 

The Le Mehauté diagram, shown below, illustrates and resumes the wave 

theories which are used now. The wave theories provide an analytical expression 

of the velocity profile for a constant water depth. 

 

 

 

 

 

 

 

 

 

 

 

 

This diagram helps us to choose a theory, by looking at the wave steepness s, 

the wave amplitude H, the wave frequency f and the water depth.  

The free surface elevation and the velocity profile is well known in the linear 

theory and is the simplest theory. Indeed the FSE is given by: 

𝜂(1) =
𝐻

2
∗ cos (𝜃) 

Where θ is the phase function 𝑘𝑥 −  𝜔𝑡, x is the direction of the wave 

propagation. The velocity profile underneath the free surface elevation was 

summarized in [17]. The formulas for the horizontal and the vertical velocities 

are given by: 

 

 

𝑑

𝑔𝑇2
 

𝐻

𝑔𝑇2
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𝑢(1) =  
𝜋𝐻

𝑇

cosh (𝑘(𝑧 + 𝑑))

sinh (𝑘𝑑)
cos (𝜃) 

 

𝑣(1) =  
𝜋𝐻

𝑇

sinh (𝑘(𝑧 + 𝑑))

sinh (𝑘𝑑)
sin (𝜃) 

 

By increasing the wave height and the steepness, we must extend the 

description of the free surface elevation to second-order Stokes waves with the 

following terms: 

𝜂(2) = 𝜂(1) + 
𝜋𝐻2

8𝜆

cosh(𝑘𝑑)

𝑠𝑖𝑛ℎ3(𝑘𝑑)
(2 + cosh(2𝑘𝑑))cos (2𝜃)  

Thus the horizontal and vertical velocities are given by : 

𝑢(2) = 𝑢(1) + 
3

4

𝜋𝐻

𝑇
(

𝜋𝐻

𝜆
)

cosh [2𝑘(𝑧 + 𝑑)]

𝑠𝑖𝑛ℎ4(𝑘𝑑)
cos (2𝜃) 

 

𝑣(2) = 𝑣(1) + 
3

4

𝜋𝐻

𝑇
(

𝜋𝐻

𝜆
)

sinh [2𝑘(𝑧 + 𝑑)]

𝑠𝑖𝑛ℎ4(𝑘𝑑)
sin (2𝜃) 

These formulas were originally developed for deep water waves. Therefore, they 

might be not well suited for intermediate conditions. In addition, the velocities 

formulas above are calculated up to the still water level, so additional analytical 

descriptions, such as extrapolation or stretching, have to be used to describe the 

in-crest velocities. 

2.1.4 Extrapolation and Wheeler stretching 
 

The first approach to this issue is to use a linear extrapolation within the crest. 

The sill water level is noted z = 0. The horizontal and the vertical velocities follow 

then this rule: for z ≤ 0, u and v are calculated with the appropriate wave theory 

and for z > 0, u and v are given by : 

𝑢(𝑧) = 𝑢(0) + 𝑧
𝑑𝑢

𝑑𝑧
|

𝑧=0
 

𝑣(𝑧) = 𝑣(0) + 𝑧
𝑑𝑣

𝑑𝑧
|

𝑧=0
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Figure 5 Velocity profile for intermediate water conditions [20] Figure 4 Velocity profile for deep water conditions [20] 

Another method is to use the Wheeler stretching [17]. A new vertical coordinate, 

zs(t), is defined from the sea floor to the free surface, -d < zs(t) < η(t). This new 

parameter is related to the z coordinate lying between -d < z < 0, which is then 

substituted in the equation: 

𝑧 =  
𝑧𝑠 −  𝜂

1 + 
𝜂
𝑑

 

While the extrapolation method does not alter the velocity profiles below the still 

water level, Wheeler stretching implies changes in the velocity profiles below z = 

0. The influence of the extrapolation (solid lines) and Wheeler stretching methods 

(dashed lines) is illustrated in figures 4 and 5, showing the horizontal velocity 

profiles along the water depth, under the wave crest and trough. The waves are 

clustered into two groups: intermediate water waves (from I1 to I5) and deep-

water waves (from D1 to D5). Within each group, the individual waves have the 

same period and wavelength, and increasing wave heights. From Figures 4 and 5, 

it can be seen that the profiles based on Wheeler stretching method have a larger 

radius of curvature than the profile based on extrapolation method under crests. 

The opposite trend is observed under troughs. So the two methods deliver different 

results, with an increasing discrepancy with increasing wave height. The accuracy 

of each method was assessed based on the experimental results according to this 

work [7]. Also, the figure 4 show the effect of intermediate water conditions: the 

velocity at the bottom of the tank is not close to zero in the theoretical profiles, 

even though it is zero in the physical environment due to the friction with the 

bottom wall. This implies a small curvature in the theoretical profiles from the sea 

floor to the free surface which may not represent the reality.  

 

  

Water crest 

Water trough 

Water crest 

Water trough 
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Figure 6 Overview of OpenFOAM structure [8] 

3 OpenFOAM 
 

This section is intended to give an overview of the numerical methods implemented 

in OpenFoam through the description of the solver used for this work. We will see 

through this section, how the free surface is modelled, and which equations are 

added to the set of equations that must originally be solved. Then we will see how 

with the finite volume method, these equations are discretized into the cells of the 

mesh. The solver interFoam, which has been used originally for this study, will be 

then detailed. More information can be found in the OpenFoam user guide [8] 

3.1 General overview 

 

OpenFOAM is a C++ library, used to create applications. The applications fall into 

two categories: solvers, which are designed to solve the problem in continuum 

mechanics; utilities, which are designed to manipulate data. Since OpenFOAM uses 

a C++ language, extensive modifications can be implemented by the users as the 

creation of solvers, which will be discussed later in this paper with interFoamBeach. 

The overall structure of OpenFOAM is shown is shown in the figure below: 

 

 

 

 

 

 

 

 

 

Compared to other commercial software like ANSYS FLUENT, on OpenFOAM, the 

simulation and its options are entirely defined on text files. These text files are 

sorted as shown in the figure below: 
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Figure 7 Case directory structure [8] 

 

 

 

 

 

 

 

 

 

 

 

 

• system: Contains the geometry and mesh definition, numerical scheme 

settings and the simulation controls. 

 

• constant: Contains the physical properties of the case. Any boundary or 

interface modifications during simulation is set up in this folder with their 

respective “dictionary” file. 

 

• 0.org: Contains information for physical values, volume fractions, and 

boundary conditions. This is the start folder for the simulation that copied 

to be 0 folder for the first-time step. 

 

With this structure, OpenFOAM has many advantages and disadvantages: 

OpenFOAM is released under the license GNU General Public License, which means 

that it is free for anyone to download and use. OpenFOAM also allows the possibility 

to use all available processors for a single simulation, whereas for commercial 

software licenses, the use of additional processors requires additional licenses, 

limiting therefore the available processors to the number purchased in the license. 

Moreover, the lack of license constraints means that OpenFOAM can be customized 

to suit any workflow. Tasks ordinarily requiring manual interaction can be 

automated using the python library PyFoam. 
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Figure 8 Free surface boundary condition 

However, OpenFOAM is not controlled through a graphical user interface (GUI) 

unlike most of the commercial CFD softwares. Settings are adjusted via text files 

called dictionaries and everything is controlled via the command line. The lack of 

a GUI and of a maintained documentation makes it difficult for the new users. 

For post-processing simulations OpenFOAM comes with ParaView that allows the 

visualization of the geometry, the results and some post processing manipulations. 

It is called with paraFoam command from the case folder. 

3.2 Free surface boundary condition 

 

Free surfaces occur at the interface between two fluids. Such interfaces require 

two boundary conditions to be applied: a kinematic condition which relates the 

motion of the free interface to the fluid velocities at the free surface and a dynamic 

condition which is concerned with the force balance at the free surface. 

 

 

 

 

 

 

 

 

3.2.1 Kinematic boundary condition 
 

The position of a free surface can always be given in implicit form as F(xj , t) = 0. 

For instance, the height of the free surface above the x-axis is specified as  

y = η(x, t) and an appropriate function F(x, y, t) would be given by F(x, y, t) = 

η(x, t) − y. 

Fluid particles on the free surface always remain part of the free surface, therefore 

we must have 

y =η(x,t)  
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𝐷𝐹

𝐷𝑡
=  

𝜕𝐹

𝜕𝑡
+ 𝑢𝑘

𝜕𝐹

𝜕𝑥𝑘
= 0 

 

3.2.2 Dynamic boundary condition 
 

The dynamic boundary condition requires the stress to be continuous across the 

free surface which separates the two fluids (air and water in this study case). The 

traction exerted by fluid (1) onto fluid (2) is equal and opposite to the traction 

exerted by fluid (2) on fluid (1). Therefore we must have t(1) = −t(2). Since n(1) = 

−n(2) . By neglecting the free surface tension, we obtain 

𝜏𝑖𝑗
(1)

𝑛𝑗 =  𝜏𝑖𝑗
(2)

𝑛𝑗 

3.3 Volume of fluid method 

 

Several methods were developed to tackle the question of multiphase flows 

modelling considering the free surface boundary issue. For our study case, a well-

accepted method will be used: the Volume of Fluid (VOF) method. 

The VOF method is reported by Nichols and Hirt in their papers [2][3] and consists 

of three ingredients: a scheme to locate the surface, an algorithm to track the 

surface as a sharp interface moving through a computational grid, and a means of 

applying boundary conditions at the surface. Therefore the density and viscosity 

are weight-averaged by the volume fraction of each phase: 

𝜌 =  𝛼𝑙𝜌𝑙 + (1 − 𝛼𝑙)𝜌𝑔 

𝜇 =  𝛼𝑙𝜇𝑙 + (1 − 𝛼𝑙)𝜇𝑔 

where 𝛼𝑙 is a volume fraction of liquid, αg volume fraction of gas and 𝜌𝑙 and 𝜌𝑔 are 

densities of liquid and gas respectively. Velocity also determined on weighted-

average method as 

𝑢 =
𝛼𝑙𝜌𝑙𝑢𝑙 +  𝛼𝑔𝜌𝑔𝑢𝑔

𝜌
 

This method allows the treatment of each phase separately. The evolution of the 

fluid in the system is governed by the following transport equation: 
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Figure 9 VOF method depicting the free surface [21] 

𝜕𝛼𝑙

𝜕𝑡
+ ∇ ∙ (𝛼𝑙𝒖) = 0 

With the following constraints, since there are only 2 phases in the system: 

𝛼𝑙 + 𝛼𝑔 = 1 

The VOF method is computationally friendly, as it introduces only one additional 

equation and thus requires minimal storage. 

 

 

 

 

 

 

 

 

3.4 Finite volume method 

 

The Finite Volume Method (FVM) is a discretization method which is well suited for 

the numerical simulation of various types of conservation laws; it has been 

extensively used in several engineering fields, such as fluid mechanics. It may be 

used on arbitrary geometries, using structured or unstructured meshes, and it 

leads to robust schemes. An additional feature is the local conservativity of the 

numerical fluxes, that is the numerical flux is conserved from one discretization 

cell to its neighbour. This last feature makes the finite volume method quite 

attractive when modelling problems for which the flux is of importance, such as in 

fluid mechanics. The finite volume method is locally conservative because it is 

based on a “balance” approach: a local balance is written on each discretization 

cell which is often called “control volume”; by the divergence formula, an integral 

formulation of the fluxes over the boundary of the control volume is then obtained. 

The fluxes on the boundary are discretized with respect to the discrete unknowns. 

More information can be found in this paper [4]. 
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Figure 10  Mesh and notation for one-dimensional finite volume method [22] 

 

 

3.4.1 Explanations of FVM 
 

The basis of the finite volume method is the integral conservation law. The 

essential idea is to divide the domain into many control volumes (or cells) and 

approximate the integral conservation law on each of the control volumes. The 

figure below shows an example of a partition of a one-dimensional domain into 

cells. By convention cell i lies between the points 𝒙
𝒊−

𝟏

𝟐

  and 𝒙
𝒊+

𝟏

𝟐

 . 

 

 

 

 

 

We recall the general integral conservation law : 

𝑑

𝑑𝑡
∫ 𝑈𝑑𝛺

(𝛺)

+  ∫ 𝐹(𝑈) ∙ 𝑛𝑑𝑠
𝑑𝛺

=  ∫ 𝑆(𝑈, 𝑡)𝑑𝛺
(𝛺)

 

With 

• Ω represents the domain 

• ∂Ω represents the boundary of the domain 

• U(x, y, z, t) represents a physical quantity, it is a scalar, integrating over 

the domain it will be dependent only on time 

• F is the Flux vector that represents inflow and/or outflow on the domain 

via the boundaries, n is the outward pointing normal vector of the 

boundary 

• S represents volume sources that can be either sources or sinks. 

By using the Green-Ostrogradsky theorem, we can therefore write that 

∫ 𝐹(𝑈) ∙ 𝑛𝑑𝑠
𝑑𝛺

=  ∫ ∇ ∙ 𝐹
(𝛺)

𝑑𝛺 
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So the equation can be rewritten as : 

𝑑

𝑑𝑡
∫ 𝑈𝑑𝛺

(𝛺)

+  ∫ ∇ ∙ 𝐹
(𝛺)

𝑑𝛺 =  ∫ 𝑆(𝑈, 𝑡)𝑑𝛺
(𝛺)

 

This form is called the integrated form, it is considered as a global form. We can 

also write a local form, a differential form : 

𝑑𝑈

𝑑𝑡
+ ∇ ∙ 𝐹(𝑈) = 𝑆(𝑈, 𝑡) 

3.4.2 Transport equation 
 

The Navier-Stokes equation can be written using the standard form of the 

transport equation for any quantity 𝛷(𝑡) : 

𝜕𝜌𝛷(𝑡)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑼𝛷(𝑡)) = ∇ ∙ (𝛤∇𝛷(𝑡)) + 𝑆𝛷   

Where 

• ρ is the density, U is the velocity and Γ is the diffusivity. 

• 
𝜕𝜌𝛷(𝑡)

𝜕𝑡
 is the transient term, which represents the accumulation of 𝛷(𝑡) in the 

concerned control volume. 

• 𝛻 ∙ (𝜌𝑼𝛷(𝑡)) is the convection term, which represents the transport of 𝛷(𝑡) 

due to the existence of a velocity field. 

• ∇ ∙ (𝛤∇𝛷(𝑡))  is the diffusion term which represents the transport of 𝛷(𝑡) due 

too its gradient 

• 𝑆𝛷 is the source term, which represents any sources or sinks that create or 

destroy 𝛷(𝑡) . 

3.4.3 Transient term 
 

The integral form of the transient term is : 

∫
𝜕𝜌𝛷(𝑡)

𝜕𝑡𝑉

𝑑𝑉 

The discretization follows the next rule: 

• 𝛷(𝑛) =  𝛷(𝑡 + ∆𝑡) the new values at the solving time step 
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Figure 11 Selected schemes for this study 

• 𝛷(𝑛−1) =  𝛷(𝑡) the previous values which are stored from the previous time 

step 

• 𝛷(𝑛−2) =  𝛷(𝑡 − ∆𝑡) older values  

The discretization method can be implemented in the fvSchemes file under the 

ddtSchemes section. For this study, we use the Euler scheme. More information 

can be found in the user guide [5] 

3.4.4 Convection term 
 

The convection term is integrated and linearized as follows: 

∫ 𝛻 ∙ (𝜌𝑼𝛷(𝑡))𝑑𝑉 =  ∑ 𝐹𝛷𝑓

𝑓𝑉

 

Where F is the mass flux through the face f. 

If we consider the momentum equations, φ is replaced by the velocity vector 

which is expressed at the cell centers. Therefore an interpolation of the values 

from cell centers to face centers is needed. A detailed method can be found in 

this help note to choose [14]. 

These parameters are written in the fvSchemes file, under the divSchemes 

section 

 

 

 

 

 

 

3.4.5 Diffusion term 
 

As for the convection term, the diffusion term is also integrated and linearized as 

follows: 
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Figure 12 Laplacian schemes 

∫ 𝛻 ∙ (𝛤𝛻𝛷)𝑑𝑉 =  ∑ 𝛤𝑓𝑆𝑓 ∙ (∇𝛷)𝑓

𝑓𝑉

 

Where Γ is considered as a scalar. 

This parameter is also written in the fvSchemes files under the section Laplacian. 

In order to transform cell-centre quantities to face centres, an interpolation 

scheme has to be used. The linear interpolation was used in this study. 
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Figure 13 Tank setup [7] 

 

 

4 Numerical study 
 

4.1 Real tank setup 

 

During the real experiment, the tank was set up like in the picture below: 

 

 

 

 

 

 

 

 

 

A piston on the left of the tank generated a wave and the Particle Image 

Velocimetry (PIV) was employed in order to define the velocity profile underneath 

the wave. The Wave Probes (WP) 1-2 are located in the same horizontal distance 

from the piston, the WP 3 is located in the center of the interrogation window and 

the WP 4-8 are located before the beach in order to calculate the refraction 

coefficient. 

 

10 experiments were carried out, where 10 different waves were created. Because 

the linear case is already well studied in [17], the focus was on the second and 

third order of Stokes and in an intermediate-water or deep-water conditions. The 

waves from I1 to I5 are intermediate-water waves with a wave period of 1.53s 

and a wavelength of 3.21m. The waves from D1 to D5 are deep-water waves with 
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Figure 15 Details of the experimental range, T for wave period, H for wave height, λ for 
wavelength and d for depth [7] 

a wave period of 0.94s and a wavelength of 1.36m. All the cases are detailed in 

the figure and the chart below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Experience range [7] 
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Figure 16 Down wave view [7] 
Figure 17 Up wave view [7] 

Figure 18 Up view of the beach 
construction[20] 

Figure 19 Schematics of the beach [20] 

In the end of the tank, a wave-absorbing beach was constructed in a wave-

absorbing foam in order to have the lowest coefficient of reflection possible.  

Shown below, pictures and schematics of the experiments: 
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Figure 20 Creation of the piston 

4.2 Numerical wave tank 

 

The use of the numerical wave tank has already been proven in [15], so to model 

the experiment in OpenFoam, many other parameters must be taken into 

consideration. Therefore, 3 different areas have been identified: the wavemaker 

piston, the free surface, and the absorbing beach.  

4.2.1 Wavemaker 
 

The wavemaker is a function made by ihFoam, which allows the wall to act like a 

piston. More information of the contribution of ihFoam can be found in [12]. It has 

been implemented in the pointDisplacement file, located in the 0 folder. 

 

 

 

 

 

 

 

 

 

 

Where :  

• n is the direction, in which the patch will move 

• waveHeight is H 

• initialDepth is d 

• wavePeriod is T 

This tool is available since the version 1912 of OpenFoam.  



31 
 

4.2.2 Convergence study 
 

In order to postprocess the results, a good mesh resolution must be implemented. 

However, a finer mesh results in greater computational resources and thus time, 

so a convergence study has to be carried out in order to find a balance between 

finer results and computational costs. Because it is not needed to have the 30 

meters tank implemented to proceed to the convergence study, a 5-meter tank 

has been modelled with different mesh sizes. According to work [15], to the work 

[7] and the work [17], the free surface elevation and the velocity were the criteria 

to define a fine mesh with good results. 

The following method was used: 

• (a) Throughout the course of the simulation, extract the η(xn,t) at every 

meters of the tank and extract the horizontal velocity 

• (b) Determine the time T, where there is a wave crest or a wave trough 

• (c) Decrease the time step dT, to get more data to proceed 

• (d) Proceed to the following calculations: 

o The calculations need that at least 3 studies were carried out. We 

will define f as the finer mesh, mf as medium fine mesh and c as 

coarse mesh 

o S is defining the results, that are compared. Thus S is either the 

horizontal velocity, either the free surface elevation 

o Calculate          

     𝜀𝑓−𝑚𝑓 = 𝑆𝑓 − 𝑆𝑚𝑓 

 

                                                   𝜀𝑚𝑓−𝑐 = 𝑆𝑚𝑓 − 𝑆𝑐 

 

                                               𝑅 =
𝜀𝑓−𝑚𝑓

𝜀𝑚𝑓−𝑐
 

 

• (e) At this point, 3 conditions of convergence are possible:  

o Monochromatic convergence: 0 < R < 1 
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Figure 21 coarsest mesh, minimum cell size : 
1.25 x 1.25 cm 

Figure 22 finest mesh, minimum cell size :                  
7.8125e-2 x 7.8125e-2  cm 

o Oscillatory convergence: R < 0 

o Divergence: |R| > 1 

 

6 different meshes were created in order to carry out this convergence study. Each 

finer mesh has a smaller size of cell, divided by 4 (2 in verticals and 2 in horizontal 

point of view). Finer mesh is used near the free surface. The pictures below show 

the coarsest and the finest meshes and indicates the cell cize: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the protocol, in order to identify crests and trough, numerical wave 

probes were used, implemented in the controlDict file (released in the version 

2006 of OpenFoam). 

Mesh size (in cm) Level of refinement 

5 base mesh 

2.5 1 level 

1.25 2 level 

0.625 3 level 

0.3125 4 level 

0.15625 5 level 

0.078125 6 level 

Table 1 Different mesh size, different computational cost 
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Figure 23 Free surface elevation 

Figure 24 Zoom on a crest 
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Figure 25 Zoom on the velocity profile 

Figure 26 Velocity profile 
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Figure 27 Reflection coefficients [20] 

At this point, we can clearly see that the results are convergent for the. But to 

select which level to choose, the use of the R coefficient is needed. Therefore the 

table below summarize the protocol’s calculations. 

 

 

 

Convergence on U horizontal 

Level of refinement 6 5 4 3 2 

Horizontal velocity 0.069166 0.074056 0.084188 0.14346 0.13679 

ε 
3-2 4-3 5-4 6-5  

0.00667 -0.059272 -0.010132 -0.00489  

R 
R432 R543 R654   

-8.8863568 0.17094075 0.48262929   
 

Based on this study and on the protocol of [17], we can conclude that both velocity 

and FSE are converging, R < 1. The level of mesh refinement adopted is then the 

5th. 

4.2.3 Modelling the beach 
 

In the real experiment, the beach was constructed in order to absorb the wave. 

But there were still reflective waves after the beach. A reflection coefficient was 

then calculated. It is defined as the ration between incident and reflected wave 

spectra. Those coefficients are depicted in the table below: 

 

 

 

 

Convergence on alpha.water 

Level of refinement 6 5 4 3 2 

Free surface elevation 0.7122251 0.7122561 0.7124362 0.7138642 0.7130103 

ε 
3-2 4-3 5-4 6-5  

0.0008539 -0.001428 -0.0001801 -3.1E-05  

R 
R432 R543 R654   

-1.67232697 0.12612045 0.1721266   
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Figure 28 Different methods for 
modelling the beach [15] 

In order to create a numerical absorbing and reflecting condition, many theories 

have been studied and fully developed in the reference [10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• (a) In the relaxation method zone, a target solution is applied at the 

boundary of the NWT and a weighting function is implemented in the 

relaxation, thus providing a smooth transition from the computed solution 

to the target solution 

• (b) In the static boundary method, a correction velocity is applied on the 

boundary in order to cancel the incident wave field. 

• (c) The dynamic boundary method is a method where the boundary of the 

NWT is moving at a controlled velocity, provided by a force feedback or 

analytical expression or directly by the physical wave tank measurements. 

• (d) The numerical beach method adds an absorbing term in the RANS 

equation 
𝜕𝜌 ∗ 𝑈(𝑥, 𝑡)

𝜕𝑡
+  𝛻 ∙  𝜌 ∗ 𝑈(𝑥, 𝑡)𝑈(𝑥, 𝑡) =  −𝛻𝑝(𝑥, 𝑡) +  𝛻 ∙ 𝑇(𝑥, 𝑡) + 𝜌𝑓

𝑏
(𝑥, 𝑡) + 𝑆(𝑥)𝜌𝑈(𝑥, 𝑡) (1) 

 

The S(x)ρU(x,t), introduced by this equation, is used to dissipate the 

wave. 

• (e) The sloped bathymetry method does not include a term in the 

equation, but rather changes the domain layout. It replicates more the 

physical world. 

• (f) The mesh stretching does not require a term in the governing 

equation. The spatial stretching of the cells here plays the role of 

absorber, so any wavelength shorter than the cell size are entirely filtered 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Figure 29 Sand coefficient, with lbeach =2 m, sandMax = 15, the blue 
parts stand for S(x) = 0 and the red to S(x) = 15. 

out. Therefore the spatial domain is big, but the cell count is not 

dramatically increased due to the expansion of the cell. 

 

For this study, the numerical beach method was used, because, with a fixed 

beach size, only 1 parameter will change in order to achieve different reflection 

coefficients. 

 

4.2.4 Corrected sand function 
 

As it is implied in the equation (1), a new term must be added to the Navier-Stokes 

equation. This term is detailed in the work [13] and the sand coefficient S(x) is 

given as : 

𝑆(𝑥) =  −2𝑠𝑎𝑛𝑑𝑀𝑎𝑥 (
𝑙𝑏𝑒𝑎𝑐ℎ − 𝑥

𝑙𝑏𝑒𝑎𝑐ℎ
)

3

+ 3𝑠𝑎𝑛𝑑𝑀𝑎𝑥 (
𝑙𝑏𝑒𝑎𝑐ℎ − 𝑥

𝑙𝑏𝑒𝑎𝑐ℎ
)

2

(2) 

Where lbeach is the length of the numerical beach, x is the position within the 

numerical beach, equalling zero at the start and increasing to lbeach at the NWT 

wall, and sandMax stands for the maximum value of sand. According to this work 

[13], the value of sand should be increased gradually from the start to the end of 

the numerical beach, in order to avoid a sharp difference in absorption and thus 

avoid numerical reflection. 

However, by applying this equation (2) and plotting it for random values of sandMax 

and lbeach, we can clearly see that instead of gradually increasing the sand 

coefficient, this function is creating a step function and decreasing gradually as 

shown in the figure below: 
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Figure 30 Plotting of the sand function with lbeach = 2 m, sandMax = 15 

Figure 31 Corrected sand coefficient where the blue part stands for S(x) = 0 and the red part stands for S(x) = sandMax 

 

 

 

 

 

 

 

 

 

 

 

This function will thus create numerical reflection. Therefore, another function 

must be created to avoid this problem: 

𝑆(𝑥) =  2𝑠𝑎𝑛𝑑𝑀𝑎𝑥 (
𝑙𝑏𝑒𝑎𝑐ℎ − 𝑥

𝑙𝑏𝑒𝑎𝑐ℎ
)

3

−  3𝑠𝑎𝑛𝑑𝑀𝑎𝑥 (
𝑙𝑏𝑒𝑎𝑐ℎ − 𝑥

𝑙𝑏𝑒𝑎𝑐ℎ
)

2

+  𝑠𝑎𝑛𝑑𝑀𝑎𝑥 

 

By using this equation, we stick to the description given in [13]: the sand 

coefficient is gradually increasing from 0 at the beginning of the beach and 

reaching sandMax as shown in the figures below. 
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Figure 32 Correted sand coefficient function, with lbeach = 2m, 
sandMax = 15 

 

 

 

 

 

 

 

 

 

 

 

In order to create this function on OpenFOAM, a tool has to be added: swak4Foam. 

Indeed, this library offers the user the possibility to specify expressions involving 

the fields and evaluates them. More information about this utility can be found in 

the contribution site [9].  

The function will then be implemented in the funckySetFieldsDict file, located in 

the system folder 

 

Figure 33 Content of the funckySetFieldsDict for a NWT of 12 m long 

 

4.3 InterFoamBeach 

 

A new solver has to be created in order to handle the numerical beach. It uses the 

same parameters as the interFoam solver, which is originally provided in 

OpenFOAM 2006, with the extra term. The new fields are added in the 

createFields.H file, located in the main folder of the solver and in the 

interMixingFoam sub-folder. As said in the work of Christian Windt et al. [10], the 
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Figure 34 New fields created for the new solver. Introducing the zVector field and the Beach field 

Figure 35 Addition of the new term to the existing 
equation 

beach is acting on the vertical, z-direction, to dissipate the waves, while allowing 

for a steady current flow in x-direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now that the fields are created, the new term can be added in the equation. It is 

implemented in the UEqn.H file, located in the main directory: 

 

 

  

 

 

 

 

 

4.4 Reflection coefficient 

 

The simulation is now following the equation (). To calculate the wave reflection 

coefficient, the three probe method [11] was implemented. A description of this 

method is given below. 

The wave profile observed at any one of the probe positions may be given as a 

summation of discrete, harmonically related Fourier components: 
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𝜂𝑝(𝑡) =  ∑ 𝐴𝑝,𝑘 ∗ sin (
2 ∗ 𝜋 ∗ 𝑘 ∗ 𝑡

𝑇
+  𝛼𝑝,𝑘)

𝑁

𝑘=1

 

Where : 

• Ap,k is the Fourier coefficient for frequency k/T, 

• T is the length of the wave profile which is being observed; thus, the 

fundamental is 1/T 

• αp,k, is the phase  

• N is an upper limit of summation which depends on the maximum significant 

frequency component in the series. 

The Fourier coefficients and their phases are obtained from a Fourier transform of 

the FSE function and are given in polar form as: 

𝐵𝑝,𝑘 =  𝐴𝑝,𝑘𝑒𝑖𝛼𝑝,𝑘 

But the wave profile can also be written a sum of an incident wave and a reflected 

wave which is described by the following equation of a progressive wave: 

𝜂𝑝(𝑡) =  ∑ 𝐶𝐼,𝑘 ∗ sin (
−2𝜋 ∗ 𝑘 ∗ 𝑡

𝑇
+

2𝜋 ∗ 𝑋1

𝐿𝑘
+ 𝜃𝑘)

𝑁

𝑘=1

+ ∑ 𝐶𝑅,𝑘 ∗ sin (
−2𝜋 ∗ 𝑘 ∗ 𝑡

𝑇
+

2𝜋 ∗ (𝑋1 + 2 ∗ 𝑋𝑅1 − 𝑋1𝑃)

𝐿𝑘
+ 𝜃𝑘 + 𝜑𝑘)

𝑁

𝑘=1

 

 

Where : 

• CI,k is the amplitude of the incident wave 

• CR,k is the amplitude of the reflected wave 

• X1 is the distance between the left wall and the first wave probe 

• XR1 is the distance between the right wall and the first wave probe 

• X1P is the distance between the probe 1 and the probe p (X11 =0) 

• Lk is the wave length of the wave 

 

Figure 36 Set up for wave reflection measurement [11] 
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Let us introduce the following parameters: 

𝑍𝐼,𝑘 = 𝐶𝐼,𝑘 ∗ 𝑒
𝑖∗(

2𝜋∗𝑋1
𝐿𝑘

+𝜃𝑘)
 

𝑍𝑅,𝑘 = 𝐶𝑅,𝑘 ∗ 𝑒
𝑖∗(

2𝜋∗(𝑋1+2∗𝑋𝑅1)
𝐿𝑘

+𝜃𝑘)
 

 

Consequently: 

𝐵𝑝,𝑘 = 𝑍𝐼,𝑘 ∗ 𝑒
𝑖∗

2𝜋∗𝑋1𝑝
𝐿𝑘 + 𝑍𝑅,𝑘 ∗ 𝑒

−𝑖∗
2𝜋∗𝑋1𝑝

𝐿𝑘  

 

 

According to Mansard and Funke [11] : 

𝑍𝐼,𝑘 =
1

𝐷𝑘
∗ (𝐵1,𝑘 ∗ (𝑅1 + 𝑖 ∗ 𝑄1) + 𝐵2,𝑘 ∗ (𝑅2 + 𝑖 ∗ 𝑄2) + 𝐵3,𝑘 ∗ (𝑅3 + 𝑖 ∗ 𝑄3)) 

𝑍𝑅,𝑘 =
1

𝐷𝑘
∗ (𝐵1,𝑘 ∗ (𝑅1 − 𝑖 ∗ 𝑄1) + 𝐵2,𝑘 ∗ (𝑅2 − 𝑖 ∗ 𝑄2) + 𝐵3,𝑘 ∗ (𝑅3 − 𝑖 ∗ 𝑄3)) 

Where: 

• 𝛽𝑘 =  
2𝜋∗𝑋12

𝐿𝑘
 

• 𝛾𝑘 =  
2𝜋∗𝑋13

𝐿𝑘
 

• 𝐷𝑘 = 2 ∗ (𝑠𝑖𝑛2(𝛽𝑘) + 𝑠𝑖𝑛2(𝛾𝑘) +  𝑠𝑖𝑛2(𝛾𝑘 − 𝛽𝑘)) 

• 𝑅1𝑘 =  𝑠𝑖𝑛2(𝛽𝑘) + 𝑠𝑖𝑛2(𝛾𝑘)  

• 𝑄1𝑘 = sin(𝛽𝑘) cos(𝛽𝑘) + sin(𝛾𝑘) cos (𝛾𝑘) 

• 𝑅2𝑘 =  sin(𝛾𝑘) sin(𝛾𝑘 − 𝛽𝑘)  

• 𝑄2𝑘 = sin(𝛾𝑘) cos(𝛾𝑘 − 𝛽𝑘) − 2sin (𝛽𝑘) 

• 𝑅3𝑘 =  − sin(𝛽𝑘) sin (𝛾𝑘 − 𝛽𝑘) 

• 𝑄3𝑘 =  sin(𝛽𝑘) cos(𝛾𝑘 − 𝛽𝑘) − 2sin (𝛾𝑘) 

The reflection coefficient is then evaluated from 

𝑅(𝑘) =
|𝑍𝑅,𝑘|

|𝑍𝐼,𝑘|
 

 

In the appendix A and B, you can find the code that was used to calculate the 

reflection coefficient. I will explain it in the next section. 
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Figure 37 Study window in term of frequency 

Figure 38 Fourier transform 

Figure 39 Calculations of the wave number, γk and βk 

 

 

 

 

 

This part of the code focuses on the study window of the simulation in term of 

frequency. It uses the equation of the dispersion for Airy waves, which is a good 

first approach for this study: 

𝑓 =  
√𝑔 ∗ 𝑘 ∗ tanh(𝑘 ∗ ℎ)

2𝜋
 (3) 

 

 

 

 

 

 

 

 

This section applies the Fourier transform for the function η described in the 

Mansard and Funke work [11]. It has to be modified in order to get only one side 

of the Fourier transform.  

 

 

 

 

 

 

By using the same relation of dispersion (3), the wave numbers are calculated. In 

the kx matrix, the first line is only 0, the second is every βk, the third is every γk. 
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Figure 40 Calculations to get Zi and Zr 

 

 

 

 

 

 

The calculations to get Zi and Zr are detailed below 

𝑠1 =  ∑ 𝑒−2𝑖𝑘𝑥(𝑗)

3

𝑗=1

= 1 + 𝑒−2𝑖𝛽 +  𝑒−2𝑖𝛾  

𝑠2 =  ∑ 𝑒2𝑖𝑘𝑥(𝑗)

3

𝑗=1

= 1 +  𝑒2𝑖𝛽 +  𝑒2𝑖𝛾   

𝑠3 = ∑ 𝐵(𝑗) ∗ 𝑒−𝑖𝑘𝑥(𝑗) = 

3

𝑗=1

𝐵1 + 𝐵2𝑒−𝑖𝛽 + 𝐵3𝑒−𝑖𝛾 

𝑠4 = ∑ 𝐵(𝑗) ∗ 𝑒𝑖𝑘𝑥(𝑗) = 

3

𝑗=1

𝐵1 + 𝐵2𝑒𝑖𝛽 + 𝐵3𝑒𝑖𝛾 

𝑠5 = (1 +  𝑒−2𝑖𝛽 + 𝑒−2𝑖𝛾) ∗ (1 +  𝑒2𝑖𝛽 +  𝑒2𝑖𝛾) − 9  

  

By developing s5 and writing it in the rectangular form, we have : 

𝑠5 = 2 ∗ [𝑐𝑜𝑠2(𝛽) −  𝑠𝑖𝑛2(𝛽) + 𝑐𝑜𝑠2(𝛾) − 𝑠𝑖𝑛2(𝛾) + 𝑐𝑜𝑠2(𝛾 − 𝛽) − 𝑠𝑖𝑛2(𝛾 − 𝛽)] − 6 

𝑠5 = 2 ∗ [3 − 2𝑠𝑖𝑛2(𝛽) − 2𝑠𝑖𝑛2(𝛾) − 2𝑠𝑖𝑛2(𝛾 − 𝛽)] − 6 

𝑠5 =  −4 ∗ (𝑠𝑖𝑛2(𝛽) + 𝑠𝑖𝑛2(𝛾) + 𝑠𝑖𝑛²(𝛾 − 𝛽) 

 

By using the same notation as Mansard and Funke [11], we have: 

𝑠5 =  −2 ∗ 𝐷𝑘 

 

Next, let us prove that xr is Zr. 
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𝑥𝑟(𝑗) =  
𝑠2(𝑗) ∗ 𝑠3(𝑗) − 3 ∗ 𝑠4(𝑗)

𝑠5(𝑗)
 

 

𝑥𝑟 =  
(1 +  𝑒2𝑖𝛽 + 𝑒2𝑖𝛾) ∗ (𝐵1 + 𝐵2𝑒−𝑖𝛽 + 𝐵3𝑒−𝑖𝛾) − 3 ∗ (𝐵1 + 𝐵2𝑒𝑖𝛽 + 𝐵3𝑒𝑖𝛾)

−2 ∗ 𝐷𝑘
 

 

 

𝑥𝑟

=  
𝐵1 ∗ (1 + 𝑒2𝑖𝛽 +  𝑒2𝑖𝛾 − 3) +  𝐵2 ∗ (𝑒−𝑖𝛽 +  𝑒𝑖𝛽 + 𝑒2𝑖𝛾−𝑖𝛽 − 3𝑒𝑖𝛽) + 𝐵3(𝑒−𝑖𝛾 +  𝑒𝑖𝛾 + 𝑒2𝑖𝛽−𝑖𝛾 − 3𝑒𝑖𝛾)

−2 ∗ 𝐷𝑘
 

 

𝑥1
′ =  −2 + cos(2𝛽) + cos(2𝛾) + 𝑖 ∗ (sin(2𝛽) + sin(2𝛾)) 

 

𝑥1
′ =  −2 ∗ [𝑠𝑖𝑛2(𝛽) + 𝑠𝑖𝑛2(𝛾) + 𝑖 ∗ (sin(𝛽) cos(𝛽) + sin(𝛾) cos(𝛾)] 

 

By using the same notation as Mansard and Funke [11]: 

𝑥1
′ =  −2 ∗ (𝑅1 −  𝑖 ∗ 𝑄1) 

 

𝑥2
′ = −cos(𝛽) + cos(2𝛾 − 𝛽) + 𝑖 ∗ (−3 sin(𝛽) + sin(2𝛾 − 𝛽)) 

 

𝑥2
′ = −cos(𝛽) + cos(𝛽) ∗ (1 − 2𝑠𝑖𝑛2(𝛾)) + 2 sin(𝛾) sin(𝛽) cos(𝛾) + 𝑖 ∗ (−3 sin(𝛽)

+ sin(2𝛾) cos(𝛽) − sin(𝛽) cos(2𝛾)) 

 

𝑥2
′ =  −2 sin(𝛾) ∗ (sin(𝛾) cos(𝛽) − 𝑠𝑖𝑛(𝛽) cos(𝛾)) + 𝑖 ∗ (−4 sin(𝛽)

+ 2 sin(𝛾) [cos(𝛾) cos(𝛽) − sin(𝛽) sin(𝛾)]) 

 

𝑥2
′ =  −2 sin(𝛾) ∗ sin(𝛾 − 𝛽) + 2𝑖 ∗ (−2 sin(𝛽) + sin(𝛾) cos(𝛾 − 𝛽)) 

 

By using the same notation as Mansard and Funke [11]: 

𝑥2
′ =  −2(𝑅2 − 𝑖 ∗ 𝑄2) 

 

Similarly: 

𝑥3
′ =  2 sin(𝛽) ∗ sin(𝛾 − 𝛽) + 2𝑖 ∗ (−2 sin(𝛾) + sin(𝛽) cos(𝛾 − 𝛽)) 

x1
’ x2

’ x3
’ 
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By using the same notation as Mansard and Funke [11]: 

𝑥3
′ =  −2(𝑅3 − 𝑖 ∗ 𝑄3) 

So: 

𝑥𝑟 =  
𝐵1 ∗ (−2 ∗ (𝑅1 −  𝑖 ∗ 𝑄1)) + 𝐵2 ∗ (−2(𝑅2 − 𝑖 ∗ 𝑄2)) +  𝐵3 ∗ (−2(𝑅3 − 𝑖 ∗ 𝑄3))

−2 ∗ 𝐷𝑘
 

 

 

𝑥𝑟 =  
𝐵1 ∗ (𝑅1 −  𝑖 ∗ 𝑄1) + 𝐵2 ∗ (𝑅2 −  𝑖 ∗ 𝑄2) + 𝐵3 ∗ (𝑅3 −  𝑖 ∗ 𝑄3)

𝐷𝑘
 

 

 

𝑥𝑟 =  𝑍𝑟 

 

Let us prove now that xi is Zi. 

 

𝑥𝑖(𝑗) =  
𝑠1(𝑗) ∗ 𝑠4(𝑗) − 3 ∗ 𝑠3(𝑗)

𝑠5(𝑗)
 

 

𝑥𝑖(𝑗) =  
(1 +  𝑒−2𝑖𝛽 +  𝑒−2𝑖𝛾) ∗ (𝐵1 + 𝐵2𝑒𝑖𝛽 + 𝐵3𝑒𝑖𝛾) − 3 ∗ (𝐵1 + 𝐵2𝑒−𝑖𝛽 + 𝐵3𝑒−𝑖𝛾)

−2 ∗ 𝐷𝑘
 

 

 

𝑥𝑖

=  
𝐵1 ∗ (1 + 𝑒−2𝑖𝛽 + 𝑒−2𝑖𝛾 − 3) +  𝐵2 ∗ (𝑒−𝑖𝛽 +  𝑒𝑖𝛽 + 𝑒−2𝑖𝛾+𝑖𝛽 − 3𝑒−𝑖𝛽) + 𝐵3(𝑒−𝑖𝛾 +  𝑒𝑖𝛾 + 𝑒𝑖𝛽−2𝑖𝛾 − 3𝑒−𝑖𝛾)

−2 ∗ 𝐷𝑘
 

 

𝑥1
′ =  −2 + cos(2𝛽) + cos(2𝛾) − 𝑖 ∗ (sin(2𝛽) + sin(2𝛾)) 

 

𝑥1
′ =  −2 ∗ [𝑠𝑖𝑛2(𝛽) + 𝑠𝑖𝑛2(𝛾) − 𝑖 ∗ (sin(𝛽) cos(𝛽) + sin(𝛾) cos(𝛾)] 

 

By using the same notation as Mansard and Funke [11]: 

𝑥1
′ =  −2 ∗ (𝑅1 +  𝑖 ∗ 𝑄1) 

  

x1
’ x2’ x3’ 
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𝑥2
′ = −cos(𝛽) + cos(2𝛾 − 𝛽) − 𝑖 ∗ (−3 sin(𝛽) + sin(2𝛾 − 𝛽)) 

 

𝑥2
′ = −cos(𝛽) + cos(𝛽) ∗ (1 − 2𝑠𝑖𝑛2(𝛾)) + 2 sin(𝛾) sin(𝛽) cos(𝛾) − 𝑖 ∗ (−3 sin(𝛽)

+ sin(2𝛾) cos(𝛽) − sin(𝛽) cos(2𝛾)) 

 

𝑥2
′ =  −2 sin(𝛾) ∗ (sin(𝛾) cos(𝛽) − 𝑠𝑖𝑛(𝛽) cos(𝛾)) − 𝑖 ∗ (−4 sin(𝛽)

+ 2 sin(𝛾) [cos(𝛾) cos(𝛽) − sin(𝛽) sin(𝛾)]) 

 

𝑥2
′ =  −2 sin(𝛾) ∗ sin(𝛾 − 𝛽) − 2𝑖 ∗ (−2 sin(𝛽) + sin(𝛾) cos(𝛾 − 𝛽)) 

 

By using the same notation as Mansard and Funke [11]: 

𝑥2
′ =  −2(𝑅2 − 𝑖 ∗ 𝑄2) 

Similarly: 

𝑥3
′ =  2 sin(𝛽) ∗ sin(𝛾 − 𝛽) − 2𝑖 ∗ (−2 sin(𝛾) + sin(𝛽) cos(𝛾 − 𝛽)) 

 

𝑥3
′ =  −2(𝑅3 − 𝑖 ∗ 𝑄3) 

 

So 

 

𝑥𝑖 =  
𝐵1 ∗ (−2 ∗ (𝑅1 +  𝑖 ∗ 𝑄1)) + 𝐵2 ∗ (−2(𝑅2 + 𝑖 ∗ 𝑄2)) +  𝐵3 ∗ (−2(𝑅3 + 𝑖 ∗ 𝑄3))

−2 ∗ 𝐷𝑘
 

 

𝑥𝑖 =  
𝐵1 ∗ (𝑅1 +  𝑖 ∗ 𝑄1) + 𝐵2 ∗ (𝑅2 +  𝑖 ∗ 𝑄2) +  𝐵3 ∗ (𝑅3 +  𝑖 ∗ 𝑄3)

𝐷𝑘
 

 

𝑥𝑖 =  𝑍𝑖 

 

So with this algorithm, we can calculate the reflection coefficient of the sand and 

therefore get the same coefficient as in the real experiment. 
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4.5 Results 

 

The further studies are focused on the case I1 of the real experiment. 

Many simulations were run in order to find the correct value of the sand coefficient. 

Here are the results of them 

 

 

Figure 41Results of the reflection coefficient in function of the sand coefficient 

 

 

Sand coefficient Reflection coefficient 

20 0.545 

15 0.443 

5 0.321 

1.2 0.118 

1 0.1059 

0.5 0.06 

 

A tendency function has been drawn in the upper graphic: 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑦 = 𝑓(𝑠𝑎𝑛𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) = 𝑓(𝑥) 

𝑦 = 2 ∗ 10−4 ∗ 𝑥3 − 0.007 ∗ 𝑥2 + 0.0909 ∗ 𝑥 + 0.0188 

However this formula is not to be considered as a general rule, because not enough 

simulation were made to confirm this function. 

y = 0.0002x3 - 0.007x2 + 0.0908x + 0.0194
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0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

R
ef

le
ct

io
n

 c
o

ef
fi

ci
en

t

Sand coefficient



48 
 

Figure 42 Graphs of Xi and Xr in function of the sand 
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Figure 43 Horizontal velocity 

According to those results, the coherent sand coefficient for the I1 case is around 

1.2. 

 

4.6 Analysis of the results 

 

In this section, we will compare the results of the I1 case, the results with the 

Wheeler method and the extrapolation method.  

As for the convergence study, the creist was identified from the datas of the 

simulation and the results are the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By using the formulas given in previous sections, the Wheeler stretching, and the 

extrapolation method give the results below  
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Figure 44 Comparison of the results from different methods and the simulation 

 

The results from the extrapolation method and the Wheeler stretching method 

differ slightly, but both results differ from the results of the simulation as it is 

summarized in the table below: 

 

We can clearly see that there is a huge difference between he simulation and the 

theories. Many explanations can be given in order to explain this difference. The 

main reason is that the simulation is using the laminar theory which implies that 

the simulation is running in a steady state. It results in a reasonable computational 

cost, but with errors due to this decision. An other reason is that both of these 

theories are not well-suited for intermediate water waves. 
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Extrapolation method

Results

Wheeler stretching

Error wheeler/extrapolation in % Error extrapolation/results  in % Error wheeler/results  in % 

2.38 25.15 26.94 
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5 Conclusion and further work 
 

After modelling the NWT, an optimal mesh refinement was found and a 

modification was made on the sand coefficient in order to be more coherent with 

the explanation given by [13]. The sand coefficient was thus found according to 

the value of the experiment. However the fact that the laminar theory was used 

resulted in different results compared to the Wheeler stretching method and the 

extrapolation method. 

 

It is thus necessary to keep the parameters that were found in this study,but to 

use an other theory for the simulation, as the Reynolds-averaged Navier–Stokes 

equations (RANS). Moreover, all cases from the experiment were not simulated, 

so a further study could implement the same parameters as in this study, but for 

the others cases. 
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7 Appendix A : general code 

7.1.1.1 Extracting the results of the simulation 

Y=readtable('position.dat'); 

7.1.1.2 Constructing the results for the wave probes 

y1=table2array(Y(:,4)); 

y1=y1-y1(1); 

y2=table2array(Y(:,8)); 

y2=y2-y2(1); 

y3=table2array(Y(:,12)); 

y3=y3-y3(1); 

7.1.1.3 Parameters 

d12=0.3; 

d23=0.1; 

h=0.025; 

dt=0.1; 

7.1.1.4 Function 

[frequency, xi, xr] = mon3probe(y1,y2,y3,d12,d23,h,dt); 

Elapsed time is 0.014493 seconds. 

7.1.1.5 Results 

r(1,:)=frequency/(2*pi) 

r(2,:)=xr./xi; 

 

Published with MATLAB® R2020b 

 

 

  

https://www.mathworks.com/products/matlab/
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8 Appendix B : 3 probes method 

function [frequency,xi, xr] = mon3probe(y1, y2, y3, d12,d23, h, dt); 

8.1.1.1 Parameters 

% constants 

g = 9.81; 

 

%number of data points 

n = length(y1); 

 

%calculate nyquist frequency 

df = 1 / (n*dt); 

 

% separation ratio 

d13 = d12+d23; 

mu = d12/d13; 

8.1.1.2 Limit to 0.05 < kx < 0.45 

kmax = 0.45 * 2 * pi / min(d12,d23); 

fmax = sqrt( g * kmax * tanh(kmax * h)) / (2.0 * pi); 

kmin = 0.05 * 2 * pi / d13; 

fmin = sqrt( g * kmin * tanh(kmin * h)) / (2.0 * pi); 

 

if (fmin<=0) 

        error ('(fmin<0)'); 

    end 

 

nfreq = fix(fmax/df); 

mfreq = fix(fmin/df); 

if (nfreq<mfreq) 

        error ('(nfreq<mfreq)'); 

    end 

if (mfreq<=0) 

        error ('(mfreq<0)'); 

    end 

8.1.1.3 Apply fourier transform to signals 

y1_fft = fft(y1); 

y2_fft = fft(y2); 

y3_fft = fft(y3); 

 

y1_fft(1) = []; %remove offset 

y2_fft(1) = []; %remove offset 

y3_fft(1) = []; %remove offset 

B(:,1)=y1_fft(mfreq:nfreq)/(0.5*n); 

B(:,2)=y2_fft(mfreq:nfreq)/(0.5*n); 
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B(:,3)=y3_fft(mfreq:nfreq)/(0.5*n); 

8.1.1.4 Calculate wave number 

for ifreq    = 1:nfreq-mfreq+1 

   frequency(ifreq) = 2 * pi * (mfreq + ifreq - 1) * df; 

   sig     = frequency(ifreq); 

   num     = sig^2/g; 

   fun     = @(var)abs(g*var*tanh(h*var)) - sig^2; 

   k(ifreq)   = fzero(fun, num); 

end 

 

kx(1,:) = zeros(size(k)); 

kx(2,:) = k .* d12;%beta 

kx(3,:) = k .* d13;%gamma 

8.1.1.5 Calculations 

s1 = sum(exp(complex(0,-2*kx)),1); 

s2 = sum(exp(complex(0,2*kx)),1); 

s3 = sum(B'.*exp(complex(0,-kx)),1); 

s4 = sum(B'.*exp(complex(0,kx)),1); 

s5 = s1 .* s2 - 9; 

8.1.1.6 Adjusted xi and xr to be in accordance with wave direction as in documentation 

xr = abs((s2.*s3 - 3*s4) ./ s5); 

xi = abs((s1.*s4 - 3*s3) ./ s5); 

end 

 

 

 


