
MASTER OF SCIENCE THESIS

Budapest University of Technology and Economics

Improving Wave Generation in CFD-based Numerical Wave tank using
Machine Learning

IRFAN UL HASSAN

May 12, 2022

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
FACULTY OF MECHANICAL ENGINEERING
DEPARTMENT OF APPLIED MECHANICS

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
FACULTY OF MECHANICAL ENGINEERING
DEPARTMENT OF APPLIED MECHANICS

Irfan Ul Hassan
Master Thesis

Improving wave generation in CFD-based numerical wave tank
using Machine Learning

Consultant:
Dr. Davidson Josh
Assistant Professor

Supervisor:
Dr. Habib Giuseppe
Assistant Professor

Budapest, 2022

DECLARATION

Declaration of individual work

I, Irfan Ul Hassan (KN04N2), the undersigned, student of the Budapest University of
Technology and Economics hereby declare that the present thesis has been prepared by
myself without any unauthorized help or assistance such that only the specified sources
(references, tools, etc.) were used. All parts taken from other sources word by word or
after rephrasing but with identical meaning were unambiguously identified with explicit
reference to the sources utilized.

Budapest, 2022

Irfan ul Hassan

III

Contents

Abstract VII

Notations IX

List of figures XII

List of tables 1

1 Introduction 1

1.1 Objectives . 1

2 Theory and Methods 3

2.1 System Identification . 3

2.2 Modelling approaches in system identification 3

2.3 A brief overview of optimization techniques 4

2.3.1 Linear Regression and Least Squares 4

2.3.2 Regularization . 5

2.3.3 Gradient Based Algorithm . 6

2.3.4 Nonlinear Least Square Problem . 6

2.3.5 Lebenberg-Marquardt . 7

2.4 Discerete time Models Structures . 7

2.4.1 Autoregressive with Exogenous Input (ARX) 8

2.4.2 Nonlinear Autoregressive with Exogenous Inputs (NARX) 9

2.4.3 Structure of NARX Models . 9

2.4.4 Different Mapping Functions for NARX Models 11

2.4.5 Output Error (OE) Model . 13

2.4.6 Hammerstein-Wiener Model (HW) 14

2.5 Deep Learning Model Structures . 15

2.5.1 NARX Neural Network . 15

2.6 Model performance evaluation metric . 17

2.7 Model Validation . 17

2.8 Akaike information criterion (AIC) . 18

IV

2.9 Introduction to OpenFOAM . 19

2.9.1 Governing Equations . 19

2.9.2 Volume of Fluid (VOF) . 20

2.10 Introduction to Numerical Wavetanks . 21

2.10.1 Geometry of Wave Tank . 22

2.10.2 Background Mesh . 22

2.10.3 Simulation . 23

3 Numerical Study of Mass Spring Damper System 24

3.1 Direct MSD Problem . 27

3.1.1 Autoregressive with Exogenous Input (ARX) 27

3.1.2 NARX Neural Network . 29

3.2 Inverse MSD Problem . 32

4 Numerical Study of Wave Tank 37

4.1 Data generation and pre-processing . 37

4.2 Direct Numerical Wavetank (NWT) problem 40

4.2.1 Autoregressive with External Inputs (ARX) 40

4.2.2 Output Error (OE) Model . 43

4.2.3 Hammerstein-Wiener (HW) Model 44

4.2.4 Nonlinear Autoregressive with exogeneous variables 44

4.3 Nonlinear Inverse Numerical Wave Tank Problem 49

4.3.1 Autoregressive with External Inputs (ARX) 51

4.3.2 Output Error (OE) Model . 54

4.3.3 Hammerstein-Wiener (HW) Model 54

5 General Conclusions and Perspective 59

Reference 64

Appendices 65

A Additional Model Performance Data Tables 65

A.1 ARX performance vs model orders for Inverse MSD problem 65

V

A.2 ARX performance vs model orders for Direct NWT problem 66

A.3 NARX performance comparison for Direct NWT problem 67

A.4 HW model performance for Direct NWT problem 67

A.5 ARX performance vs model orders for Inverse NWT problem 68

A.6 OE and HW model performances for Inverse NWT problem 69

A.7 NARX Neural Network performance for Inverse NWT problem 70

B MATLAB And Python Codes 71

B.1 NARX Neural Network Code . 71

B.2 ARX Code for Mass-Spring-Damper System 75

VI

Abstract

The oceans are one of the largest resources of mankind, covering more than 70% of
the Earth’s surface and maintaining huge industries such as fishing, shipping, tourism,
offshore oil, gas and renewable energies. Numerical wave tanks (NWTs) can be a vital
tool for understanding, designing and optimizing systems in the ocean. A key element
of the NWT is the wavemaker, which is responsible for generating NWT waves. For the
wavemaker to generate desired water waves for modelling of nonlinear free surface waves,
hydrodynamic forces and floating body motions, fine-tuning and iterative calibration are
required, which is computationally intensive and thereby increasing the number of CFD
simulations to run and the user’s work. This study reports on a numerical wavetank
implemented in OpenFOAM and improving the wave generation capabilities of impulse
source wavemaker method by employing data-driven system identification and machine
learning techniques to identify models mapping a desired wave surface-elevation time-
trace at a probe to the wavemaker input required to create it. A comparative study of
performances of various model structures is presented for both forward and inverse NWT
problems based on their modal accuracy, complexity and computational cost. It was
demonstrated that Autoregressive with exogeneous inputs emerged as the best method
to model the dynamic behaviour of NWT satisfactorily when trained for a single training
example of medium sized amplitude. ARX was able to validate well over the datasets with
amplitude variations of almost 10 times the amplitude of the actual training dataset.

Keywords : OpenFOAM, Numerical Wavetanks (NWTs), Nonlinear System Identifica-
tion, Neural Networks, Machine Learning, Dynamic systems

* * *

VII

Acknowledgement

First and foremost, praises to God, the Almighty for his showers of blessings throughout
my research work to complete the M.Sc. thesis successfully. I would like to express my
deep and sincere gratitude to my thesis supervisor Dr. Habib Giuseppe, assistant profes-
sor, Department of Applied Mechanics, and co-supervisor Dr. Josh Davidson, assistant
professor, Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest
University of Technology and Economics for giving me an opportunity to carry out my
research work under their kind supervision and providing invaluable guidance through-
out my thesis work. I couldn’t have imagined completing my thesis work without their
continuous support. It was a great privilege and honor to work and study under their
supervision. I would like to thank Dr. Josh specially for providing me with the necessary
tools and guidance to carry out simulation part of my thesis work. Finally, I would like
to thank my family and friends, who continuously supported me through my two years of
master studies, thesis work and academically throughout my life.

Budapest, 2022

VIII

Nomenclature

Latin symbols

Notation Name, comment, value Dimension
g gravitational acceleration m/s2

p pressure bar
v velocity m/s

Greek symbols

Notation Name, comment, value Dimension
ϕ angle rad
µ dynamic viscosity Pa.s
α volume of fraction No units
∇ del operator No units
ω angular frequency rad/s
ρ density kg/m3

Abbreviations

Notation Name, comment, value
AIC Akaike Information Criterion
ARX Autoregressive with External Input.
CFD Computational Fluid Dynamics
DL Deep Learning
FFT Fast Fourier Transformation
HW Hammerstein Wiener
LS Least Square
NARX Nonlinear Autoregressive with Ex-

ternal Input
NN Neural Networks
NWT Numerical Wave Tanks
OpenFOAM Open Source Field Operation and

Manipulation.
OE Output Error.
SISO Single Input Single Output
SYSID System Identfication
VOF Volume of Fluid method

IX

List of Figures

2.1 System Identification Process . 3

2.2 The ARX model structure . 8

2.3 NARX Model Structure [1] . 10

2.4 Tree Partition Function . 11

2.5 One layer Sigmoid network . 12

2.6 Hammerstein-Wiener Model . 14

2.7 NARX Neural Network Model . 16

2.8 NARX Neural Network Model Structure [2] 16

2.9 Variants of MultiLayer Perceptron . 18

2.10 Volume of fluid technique for capturing the free surface interface [3] 20

2.11 Schematic of the numerical wave tank (NWT). 22

2.12 Background Mesh . 23

2.13 Surface Wave Variation in NWT . 23

2.14 Velocity variation in horizontal direction 23

3.1 Mass Spring Damper System . 24

3.2 Training Dataset (Multi-frequency harmonic signal) 25

3.3 Testing Dataset I (Single frequency sinusoidal signal) 25

3.4 Testing Dataset II (Single frequency sinusoidal signal) 26

3.5 Testing Dataset III (Multi-frequency harmonic signal) 26

3.6 Variation of logarithm of loss function with ny, for nu = 4, nd = 0 27

3.7 Variation of logarithm of loss function with nu, for ny = 3, nd = 0 28

3.8 Loss function vs Epocs . 29

3.9 Identified model performance comparison on Training dataset 30

3.10 Identified model performance comparison on Testing dataset I 30

3.11 Identified model performance comparison on Testing dataset II 31

3.12 Identified model performance comparison on Testing dataset III 31

3.13 Variation of logarithm of loss function with ny, for nu = 8, nd = 0 32

3.14 Variation of logarithm of loss function with nu, for ny = 0, nd = 0 33

3.15 Identified model performance comparison during training for Inverse problem 34

X

3.16 Identified model performance comparison during Testing Dataset I for in-
verse problem . 35

3.17 Identified model performance comparison during Testing Dataset II for
inverse problem . 35

3.18 Identified model performance comparison during Testing Dataset III for
inverse problem . 36

3.19 Model training duration comparison . 36

4.1 Frequency Spectrum of Input Excitation 37

4.2 Surface waves generated in OpenFOAM. (Training Dataset) 38

4.3 FFT of Training Dataset . 38

4.4 Surface waves generated in CFD solver for an Excitation with the highest
amplitude (Testing Dataset I) . 39

4.5 Surface waves generated in CFD solver for a medium sized Excitation (Test-
ing Dataset II) . 39

4.6 Surface waves generated in CFD solver for an Excitation with the smallest
amplitude (Testing Dataset III) . 40

4.7 Variation of loss function (see 2.1) w.r.t. ny, nu, for different values of nd . 41

4.8 Variation of logarithm of loss function with ny for nu = 103, nd = 94 42

4.9 Variation of logarithm of loss function nu for ny = 2, nd = 94 42

4.10 Performance of ARX model during training and testing for Direct NWT . 43

4.11 Cascade Neural Network Structure for Direct NWT problem 45

4.12 Loss Function vs Epochs during NARX Neural Network 45

4.13 Model performance during Training. 46

4.14 Model performance during Testing I. 46

4.15 Model performance during Testing II. 47

4.16 Model performance during Testing III. 47

4.17 Model training duration comparison for NWT direct problem 48

4.18 Model performance comparison over training and testing datasets 48

4.19 Dataset A with medium sized amplitude for inverse NWT problem 49

4.20 Dataset B with the smallest amplitude used for model validation. 50

4.21 Dataset C with comparable amplitude used for model validation. 50

4.22 Dataset D with the highest amplitude for additional validation 51

4.23 Variation of loss function w.r.t. ny and nu for nd = 0 51

XI

4.24 Variation of logarithm of loss function with ny for nu = 93, nd = 0 52

4.25 Variation of logarithm of loss function with nu for ny = 7, nd = 0 52

4.26 Performance of ARX model during training and testing for Inverse NWT . 53

4.27 Model performance comparison during training for inverse NWT 55

4.28 Model performance comparison during testing Dataset A for inverse NWT. 55

4.29 Model performance comparison during testing Dataset B for inverse NWT. 56

4.30 Model performance comparison during testing Dataset C for inverse NWT. 56

4.31 Model performance comparison during testing Dataset D for inverse NWT. 57

4.32 Model training duration comparison for Inverse NWT problem 58

4.33 Model performance comparison over training and testing datasets for In-
verse NWT problem . 58

XII

List of Tables

3.1 ARX Model Orders Vs Performance for Direct Problem 28

3.2 NARX Neural Network hyper-parameter selection for Direct MSD problem 29

3.3 Model performance comparison on available data in case of Direct problem 32

3.4 ARX Model Orders Vs Performance for Inverse Problem 33

3.5 Model performance comparison on available data in case of Inverse problem 34

4.1 Goodness of fit of ARX with different model orders for Direct NWT prob-
lem . 43

4.2 Model performance comparison during training and validation for NWT
direct problem . 45

4.3 Comparsion of goodness of fit values for various ARX model orders for
Inverse NWT problem . 53

4.4 Model performance comparison on available data in case of Inverse NWT
problem . 54

A.1 Goodness of fit values for various ARXModel orders for Inverse MSD problem 65

A.2 Performance of ARX with different model order configurations for NWT
direct problem . 66

A.3 Effect of changing number of units of nonlinear idTreePartition function
on the performance of the best performing ARX model order [2 103 94]
for direct NWT problem . 67

A.4 Comparison of goodness of fit values for various Hammerstein Wiener
model orders for Direct NWT problem . 67

A.5 Comparison of goodness of fit values for various ARX model orders for
Inverse NWT problem . 68

A.6 Comparison of goodness of fit values for various Output Error model orders
for Inverse NWT problem . 69

A.7 Comparison of goodness of fit values for various Hammerstein Wiener
model orders for Inverse NWT problem 69

A.8 Comparison of goodness of fit values for various NARX Neural Network for
Inverse NWT problem . 70

1

Chapter 1

1 Introduction

A Numerical wave tank (NWT) which is the generic name of numerical simulators, has
been one of the most important topics of interest to researchers and scholars working in
the areas of the marine industries for modelling nonlinear free surface waves, hydrody-
namic forces and floating body motions. Because of improved methodology and increasing
computational capacity, NWTs are becoming a viable supplement, even an alternative,
for physical model testing in the exploration of fluid-structure interaction. However, all
wavemakers are required to obtain desired surface waves or time trace of surface elevation
at some location in the tank which is usually achieved by some methods that control wave
generation process in a desired fashion.

Although different types of numerical wavemakers (NWM) exist to create waves in
NWT, in this study only impulse source method is used. The difficulty in utilising an
impulse source as an NWM lies in calculating the required source function to obtain a
desired target wave series. Since the free surface is not a variable in the Reynolds-averaged
Navier–Stokes equations (RANS) (see equation 2.41), there is no direct expression relating
the impulse source function to the resulting generated wave series [4]. Furthermore, in
many practical CFD applications, the accurate wave trace description is required at some
distance away from the wave maker, typically in the middle of the domain [5]. This
requires fine-tuning and iterative calibrations to achieve the desired free surface modelling,
thereby increasing the number of CFD simulations to run and the user’s work. The goal
is to explore data-driven system identification and deep learning techniques and identify
the models mapping a desired surface wave-elevation at the probe location in the tank to
the wavemaker input required to create it.

1.1 Objectives

Numerical wave tanks (NWTs) are playing a significant role in ocean engineering and en-
ergy wave industries. NWTs are used to generate water waves in a controlled manner for
modelling of other marine and coastal related phenomena. Unlike many other dynamic
systems, governed by linear input-output relationships, NWT which is implemented in
computational fluid dynamics (CFD) solver, OpenFOAM (v2012), exhibits nonlinear re-
lationship between the generated free surface waves and the wavemaker input required to
create these waves. With the impulse wavemaker method, it is not possible to generate
desired waves in NWTs as prior knowledge of exact description of impulse as input to the
OpenFOAM is required which is not known. The iterative approach of running many CFD
simulations for achieving the desired surface wave-elevation at some probe length in NWTs

1

is inefficient and time consuming. Such type of problems where the effect (free surface
waves) is known and cause (wavemaker input) is to be determined are termed as inverse
problems. Moreover, the presence of a time varying delay between the excitation applied
at the source region in NWT and the free surface waves detected by the probe poses
additional complexity to the existing problem. Since these are multi-frequency waves,
travelling with different velocities and thus need different amount of finite time to reach
to the probe. System identification and deep learning techniques are explored in building
mathematical models and thereby establishing a nonlinear input-output relationship from
data with no or limited physical insights of the system.

There are various sub-objectives within the primary goal of improving wave generation
in NWT using data-driven system identification. The first sub-objective is to generate
free surface waves in OpenFOAM for inputs which can captivate most of the dynamics of
the system. The data acquisition of surface waves is made after performing multiphase
simulations of NWT in a CFD solver. The second objective is to use exciting, challenging
and yet largely unexplored application field - system identification with tailor-made model
structures and fitting criteria. Once the data is generated, it is then used for develop-
ing black box models which can map the unknown nonlinear relationship between surface
waves and wavemaker input. The selection of the model form or architecture is a challeng-
ing part of this process. Various discrete model structures and deep learning models such
as ARX, Neural Network etc. are explored to describe the uncertain components of the
dynamics, while retaining structural (physical) knowledge, if available. Once a particular
model structure is selected, the most challenging part then is the selection of its model
order, which may require some prior knowledge of the system. The final objective is cross
validation of the model developed within acceptable accuracy of the fitted criteria. The
comparative study of the performance of various models is also demonstrated, based on
the accuracy, model complexity and computational costs.

It is noteworthy to mention that the objective here is to solve the NWT problem both
in forward and inverse manner. A forward problem is to find a unique effect of a given
cause by a data-driven system identification approach. Forward problems are usually
well-posed, i.e., they have a unique solution which is insensitive to small changes of the
initial values. Inverse problems are the opposite to forward problems, meaning that one
is given the effect and the task is to recover the cause . The system identification process
in inverse problem is the case ’model is to be identified for known output (surface-wave
elevation) and we want to identify input (wavemaker input)’.

Additionally, a case study of 1 degree of freedom linear dynamic system such as Mass-
Spring-Damper is also presented, where the same set of tools and strategies as applied
to NWT problem are explored in order to check the capabilities of data-driven system
identification and deep learning in establishing a cause and effect relationship both in
direct and inverse fashion.

2

Chapter 2

2 Theory and Methods

2.1 System Identification

System identification is of special interest in science and engineering. System identifi-
cation is concerned with building mathematical models of dynamical systems based on
measurements of input and output signals. There are four essential decisions in a system
identification problem [6]:

• Design an experiment or setting up simulation environment and collect the data.

• Decide upon a model architecture.

• Estimate the parameters of the model architecture by adjusting it to the data.

• Validate the model.

Figure 2.1: System Identification Process

2.2 Modelling approaches in system identification

There are basically three different modeling approaches employed in system identification
which are:

3

White box models, also known as interpretable models, are based on the first principle
i.e. physical equations. Equations and parameters are obtained by theoretical modeling.
But mostly such models can be complex or inadequate knowledge about the system can
restrict their usage.

Black box models: Models that are based exclusively on measurement data are known
as black box models. There is no previous model available. Most system identification
algorithms are based on this model. There is no direct relationship between the model
parameters and first principles.

Grey box Models: Such models represents a trade off between white box and black box.
A model which is based on both system knowledge and experimental data. However, there
are still a number of unknown free parameters in such a model that can be determined
via system identification.

In this thesis black box data driven modeling approach is utilized to identify most
suitable model that maps nonlinear relationship between surface wave-elevation to the
force input in NWT

2.3 A brief overview of optimization techniques

Finding optimal points of a model is crucial for its better performance in both prediction
and simulation. For supervised learning, where for each input data there is a labelled
output, various optimization techniques are used, and the objective is to find the minimum
of some loss function. Sum of Squared error, also known as Mean Squared error is the
most popular choice for the loss functions:

F (θ) =
N∑
i=1

ε2(i) with ε(i) = y(i)− ŷ(i) (2.1)

Least squares (LS) and nonlinear least squares (NLS) are the optimization problems
that use this special type of loss function. As the gradient of this loss function is equated
to zero in order to find minimum, leads to the linear system of equations. Moreover, If
some weights are provided to each square error term, then the resulting loss function is
called weighted least square and is useful in a situation when data points are of varying
quality. In this case noise has independent normal distribution whereas in LS. noise is
white with constant variance [7].

2.3.1 Linear Regression and Least Squares

In a linear optimization problem with sum of squared error loss function, the model output
ŷ depends linearly on n parameters

ŷ = θ1x1 + θ2x2 + . . .+ θnxn =
n∑
j=1

θjxj with xj = fj(u) (2.2)

4

where the coefficient θj are the unknown parameters. The goal is to find the model
output that best approximates the process output y in the least squares sense, i.e., with
the minimal sum of squared error loss function value. Let’s assume we have N data sample
points so that the difference between the measured output and the model prediction in
vector/matrix notation is:

ε = y− ŷ = y−Xθ (2.3)

where ε is called the residual.

ε = [ε(1) ε(2) . . . ε(N)]T ,
y = [y(1) y(2) . . . y(N)]T ,
ŷ = [ŷ(1) ŷ(2) . . . ŷ(N)]T

(2.4)

X =

x1(1) x2(1) . . . xn(1)
x1(2) x2(2) . . . xn(2)
...

x1(N) x2(N) . . . xn(N)

 ,

θ =
[
θ1 θ2 . . . θn

]T
.

(2.5)

where X and y are called the data matrix and the observation vector respectively. The
least squares problem (2.1) becomes:

F (θ) = 1
2ε

T ε −→ min
θ

(2.6)

Taking its gradient that leads to the well known orthogonal equation which provides the
estimated parameters that minimizes the least square error:

θ̂ =
(
XTX

)−1
XTy (2.7)

The matrix (XTX) in (2.7), also known as Hessian Matrix is decisive for the accuracy
of a numerical inversion and its direct computation may pose ill conditioned problem (the
condition number of (XTX) is approximately the square of the condition number of the
data matrix X). A QR decomposition method instead can be used which computes the
data matrix X directly without computing XTX [8].

2.3.2 Regularization

It is also termed as Ridge Regression. Increase in regression terms may increase model
flexibility but it can also increase additional possibility of ill conditioned problem and in-
creased estimated variance [9]. To avoid this condition a penalty term λ(|θ|2) is introduced
to (2.1) and cost function becomes

F (θ) = 1
2ε

T ε+ λ(|θ|2) −→ min
θ

(2.8)

5

and the regularized Least Square problem leads to the following parameter estimate:

θ̂ = (XTX + λI)−1XTy (2.9)

This additional penalty term takes care to all of those parameters which are not important
for solving LS problem. Such redundant terms are pushed towards zero in order to reduce
the penalty term.

2.3.3 Gradient Based Algorithm

It is a nonlinear local optimization technique extensively used in machine learning. It
works on a principle to change the parameter vector θk−1 in proportion to some learning
rate (step size), η into a direction dk−1 that points towards a gradient direction gk−1

rotated and scaled by some direction matrix Rk−1.

θk = θk−1 − ηk−1dk−1 & dk−1 = Rk−1gk−1 (2.10)

Once the parameters are initialized randomly, the aim of each iteration is to reduce the loss
function and find local minimum. How big the steps are, the gradient descent takes into
the direction of the local minimum are determined by the learning rate. It is important
to set the learning rate to an appropriate value, which is neither too low nor too high.
Higher values cause it to bounces back and forth between the convex function of gradient
descent whereas smaller values causes algorithm to find the local minimum eventually
while taking a higher toll on time[7].

Recently a new stochastic first order gradient based optimization algorithm, ’Adaptive
Moment Estimation’, (ADAM) has been introduced and is becoming popular in deep
learning community. Empirical results demonstrate that Adam works well in practice and
compares favorably to other stochastic optimization methods. it accelerates the gradient
descent algorithm by taking into consideration the ‘exponentially weighted average’ of the
gradients [10].

2.3.4 Nonlinear Least Square Problem

Loss function in nonlinear optimization problem is expressed as:

F (θ) = 1
2

m∑
i=1

f 2(i, θ) = 1
2fT f (2.11)

This is the nonlinear least square function, equation 2.1 is a special case of this function.
It is required to minimize ||f(θ)||, or equivalently to find

θ∗ = argminθ{F (θ)} (2.12)

Taking the second derivative leads to:

F′′(θ) = J(θ)>J(θ) +
m∑
i=1

fi(θ)f ′′i (θ) (2.13)

6

where J ∈ Rm×n is the Jacobian. And f usually represents residuals (error). General
optimization methods can solve least squares problems, but there are special approaches
that are more efficient and don’t require the implementation of second derivatives. Such
methods can achieve convergence better than linear, and in some cases even quadratic
convergence [11]. Some of the technique used to solve nonlinear least square problems are
gradient, conjugate gradient, Guass-Newton and Lebenberg-Marquardt algorithms [12]
[13].

2.3.5 Lebenberg-Marquardt

It is one of the most widely used technique to solve nonlinear least squares problem. It
can be thought as an extention of Guass-Newton Method or a combination of the steepest
descent and the Gauss-Newton methods. Gradient can be expressed as g = JT f and for
small f, Hessian is approximated by H ≈ JTJ . The additional term βk−1 I added to
Guass-Newton Method is equivalent to the regularization technique in ridge regression
for linear least squares problems [7]. The algorithm can be expressed as:

θk = θk−1 − ηk−1
(
JT
k−1Jk−1 + βk−1I

)−1
JT
k−1fk−1 (2.14)

The Gauss-Newton algorithm is characterized by its fast convergence, but it is often un-
stable. The gradient algorithm is generally stable, but it is very slow at the neighbourhood
of the optimum. The damping term βk−1 in equation 2.14 allows a compromise between
the stability of the gradient algorithm and the rapidity of the Newton algorithm [14] [15].
For smaller values of βk−1, Levenberg-Marquardt algorithm approaches to Guass-Newton
method while for larger values of βk−1, it approaches the steepest descent method. Far
away from the optimum the Guass-Newton method may diverge, and a larger value of
βk−1 should be chosen. Close to the optimum the second order approximation of the loss
function performed by the Guass-Newton method is very good, and a small βk−1 should
be chosen.

2.4 Discerete time Models Structures

In recent years, the modeling, identification, and control of unknown nonlinear dynamic
systems have received a lot of attention. Developing mathematical models based solely on
first principles with the derivation of accurate and complete physical equations describing
input-output relationships may not be possible due to the complex nonlinear nature of
the systems. As a result we frequently need to obtain models based on input-output data
with no or limited physical knowledge to represent this unknown nonlinear behaviour of
the system. In system identification most of the models are based on discrete time models.

7

2.4.1 Autoregressive with Exogenous Input (ARX)

ARXmodelling was the subject of studies in several fields such as chemical engineering [16]
[17], medicine [18], agriculture and biological science [19] [20], energy and the power [21],
Energy economics [22]. For linear dynamic systems, ARX is widely used black box model
for input/output relationship [6]. In this study, much focus is devoted on the development
of a mathematical model representing a nonlinear relationship between wave generation
and wavemaker input in NWTs, from only (inputs/outputs) data obtained from CFD
simulation using the model parametric ARX. Because of its simplicity and efficiency,
ARX is used for modelling of the dynamic behaviour of NWTs. The aim is to analyze the
model orders, the time delay and the validation of the identified model.

The ARX structure, as shown in Fig 2.2 describes the input effects u(t) on the process

Figure 2.2: The ARX model structure

output y(t). The ARX model is represented by the following expression:

y(t) =
ny∑
i=1

aiy(t− i) +
nu∑
i=0

biu (t− nd − i) + e(t) (2.15)

where e(t) refers to the noise supposed to be Gaussian. [ai bi] are the model parameters.
[ny nu] indicate the order of the polynomials of the output A(q) and the input B(q)
respectively. The parameter nd is the time delay between y(t) and u(t) and the number
of parameters to be estimated is Npar = ny + nu + 1. The polynomial representation of
the equation 2.15 is given as follows:

A(q)y(t) = B(q)u(t− nd) + e(t) (2.16)

where A(q) and B(q) are given by:

A(q) = 1 + a1q
−1 + · · ·+ anaq

−ny

B(q) = b1q
−1−nd + · · ·+ bnb

q−nu−nd
(2.17)

q−1 is the delay operator such as:

u(t = 1) = q−1 (2.18)

A(q) and B(q) are estimated by the least squares identification [23] [24].

8

2.4.2 Nonlinear Autoregressive with Exogenous Inputs (NARX)

Nonlinear Autoregressive with Exogenous Inputs (NARX) models are a very common
class of nonlinear models and can describe a large class of nonlinear systems [25]. The
NARX representation has attracted considerable interest in modeling nonlinear systems,
and many relevant analysis tools and identification algorithms have been developed in
recent years [26]. The NARX model is an extension of the linear ARX model [27] [28].
The Autoregressive (AR) model is used when current output is dependent only on the
previous outputs, and the ARX model is used when there is exogenous input given to
the AR model [29], as shown in Fig 2.2. The NARX model is expressed in terms of the
discrete-time input–output equation as:

ŷ(t) = f [u(t), u(t− 1), u (t− nu) , · · · , u (t− nu − nd) , y(t− 1), · · · , y (t− ny)] + e(t)
(2.19)

where y(t) and ŷ(t) are the target and predicted output variables, respectively; u(t) is the
network’s input variable; nu and ny are the input and output variable’s time delays; f is
a nonlinear function which needs to be identified from given observed data; and e(t) is
the model error between target and prediction. Increasing these values makes the model
more flexible and capable of displaying more complicated dynamical behavior, but too
high orders can cause overfitting. The number of samples before the output reacts to the
input is denoted by input time delay, nd (in such case nd ≥ 0, and system is termed as
casual) or the number of future input steps that influence the current value of the output
(in that case nd < 0, and thus system is non-casual) [30].

The complex nonlinear behaviour can be modelled using flexible nonlinear functions,
such as wavelet and sigmoid networks with the arx model structure. The structure of a
nonlinear ARX model allows the following additional flexibility:

• Instead of the weighted sum of the regressors that represents a linear mapping,
the nonlinear ARX model has a more flexible nonlinear mapping function, f as
shown in equation 2.19. Inputs to f are model regressors. When you specify the
nonlinear ARX model structure, you can choose one of several available nonlinear
functions. For example, F can represent a weighted sum of wavelets that operate
on the distance of the regressors from their means.

• Nonlinear ARX regressors can be both delayed input-output variables and more
complex, nonlinear expressions of delayed input and output variables.

2.4.3 Structure of NARX Models

A NARX model consists of model regressors and an output function. The output function
contains one or more mapping objects, one for each model output. Each mapping object
can include a linear and a nonlinear function that act on the model regressors to give

9

the model output and a fixed offset for that output. This block diagram represents the
structure of a single-output NARX model in a simulation scenario.

Figure 2.3: NARX Model Structure [1]

In MATLAB, the NARX model output y(t), is computed in two stages:

• In the simplest case, regressors are delayed inputs and outputs, such as u(t − 1)
and y(t − 3). These kind of regressors are called linear regressors. You specify
linear regressors using the linearRegressor object. The user can also specify linear
regressors by using linear ARX model orders as an input argument. However, this
second approach constrains your regressor set to linear regressors with consecutive
delays. To create polynomial regressors, use the polynomialRegressor object. To
create periodic regressors that contain the sine and cosine functions of delayed in-
put and output variables , use the periodicRegressor object. You can also specify
custom regressors, which are nonlinear functions of delayed inputs and outputs. For
example, u(t − 1)y(t − 3) is a custom regressor that multiplies instances of input
and output together. Specify custom regressors using the customRegressor object
[1].

• It maps the regressors to the model output using an output function block. The
output function block can include multiple mapping objects linear, nonlinear, and
offset blocks in parallel. For example, consider the following equation:

F (x) = LT (x− r) + g(Q(x− r)) + d (2.20)

Here, x is a vector of the regressors, and r is the mean of x, F (x) = LT (x− r) + y0

is the output of the linear function block, g(Q(x− r)) + y0 represents the output of
the nonlinear function block. Q is a projection matrix that makes the calculations
well-conditioned. d is a scalar offset that is added to the combined outputs of the
linear and nonlinear blocks. The exact form of F(x) depends on your choice of
output function such as tree-partition networks, wavelet networks, and multilayer
neural networks. When estimating a NARX model, the MATLAB computes the
model parameter values, such as L, r, d, Q, and other parameters specifying g [1].

10

2.4.4 Different Mapping Functions for NARX Models

In MATLAB, there are several mapping objects for nonlinear ARXmodels. Some mapping
functions represent the nonlinear function as a summed series of nonlinear units, such
as wavelet networks or sigmoid functions. Others use models that draw on machine
learning algorithms. One mapping object contains no nonlinear function at all, just a
linear function and an offset.

• idTreePartition object implements a tree-partitioned nonlinear function, and is a
nonlinear mapping function for estimating nonlinear ARX models. The mapping
function, which is also referred to as a nonlinearity, uses a combination of linear
weights, an offset and a nonlinear function to compute its output. The nonlinear
function contains idTreePartition unit functions that operate on a radial combina-
tion of inputs. Mathematically, idTreePartition is a nonlinear function y = F(x)

Figure 2.4: Tree Partition Function

that maps n inputs X(t) = [x1(t), x2(t)...xn(t)]T to a scalar output y(t). F is a
piecewise-linear (affine) function of x:

F (x) = xL+ [1, x]Ck + d (2.21)

Here, x belongs to the partition Pk. L is a 1-by-n vector, Ck is a 1-by-n+1 vector,
and Pk is a partition of the x-space.

• One layer sigmoid network: An idSigmoidNetwork object implements a sigmoid
network function, and is a nonlinear mapping function for estimating nonlinear

11

ARX and Nonlinear Hammerstein-Wiener models. The mapping function, which

Figure 2.5: One layer Sigmoid network

is also referred to as a nonlinearity, uses a combination of linear weights, an offset
and a nonlinear function to compute its output. The nonlinear function contains
sigmoid unit functions that operate on a ridge combination (weighted linear sum)
of inputs. Mathematically, idSigmoidNetwork is a function that maps n inputs
X(t) = [x1(t), x2(t)...xn(t)]T to a scalar output y(t) using the following relationship:

y(t) = y0 +X(t)TPL+ S(X(t)) (2.22)

– X(t) is an n-by-1 vector of inputs, or regressors.

– y0 is the output offset, a scalar.

– P is an n-by-p projection matrix, where n is the number of regressors and p is
the number of linear weights. n must be greater than or equal to p.

– L is a p-by-1 vector of weights.

– S(X) is a sum of dilated and translated sigmoid functions. The total number
of sigmoid functions is referred to as the number of units n of the network.

• idLinear object implements an affine function, and is a mapping function for estimat-
ing NARX models. The mapping function uses a combination of linear weights and
an offset. Unlike the other mapping objects for the nonlinear models, idLinear object
contains no accommodation for a nonlinear component. Mathematically, idLinear

12

is a linear function y = F(x) that maps m inputs X(t) = [x1(t), x2(t)...xn(t)]T to a
scalar output y(t).

y(t) = y0 +XTPL (2.23)

2.4.5 Output Error (OE) Model

Output-Error (OE) models are a special configuration of polynomial models, having only
two active polynomials - B and F . OE models represent conventional transfer functions
that relate measured inputs to outputs while also including white noise as an additive
output disturbance and is represented by:

yM(t) = B(q)
F (q)u(t− nd) + e(t) (2.24)

where
B(q) = 1 + a1q

−1 + . . .+ anaq
−nb

F (q) = b1q
−1 + . . .+ bnb

q−nf
(2.25)

yM(t) is the output, u(t) is the input, and e(t) is the error, the elements of [nb nf nd] are
as follows:

• nb - Order of the B(q) polynomial + 1, which is equivalent to the length of the B(q)
polynomial. nb is an Ny-by-Nu matrix. Ny is the number of outputs and Nu is the
number of inputs.

• nf - Order of the F polynomial. nf is an Ny-byNu matrix.

• nd - Input delay, expressed as the number of samples. nd is an Ny-by-Nu matrix.
The delay appears as leading zeros of the B polynomial.

The model based on the estimation of parameters at the ith iteration (e.g. using Levenberg-
Marquardt algorithm) is described by:

yM(t, θ̂i) = θ̂Ti ϕM(t, θ̂i) (2.26)

where

θ̂i =
[
â1, . . . , âna , b̂1, . . . , b̂nb

]T
ϕM

(
t, θ̂i

)
=
[
−yM

(
t− 1, θ̂i

)
, . . . ,−yM

(
t− nf , θ̂i

)
, u(t− nd), . . . , u (t− nd − nb + 1)

]T
(2.27)

Equation 2.26 has a formulation similar to that of a least squares regression (e.g ARX
see equation 2.15). However, there is a fundamental difference since the output values
in ϕM(t, θ̂i) are those of the model simulated output yM(t, θ̂i) which depends on θ̂i, the
parameter vector to be identified. The optimal output error model is basically a simulator
type model where no need of measurable process output y(t) of the system is required
[7]. Note that yM(t, θ̂i) results from the simulation of the model knowing u(t) and θ̂. OE
model can be nonlinear with respect to its parameters. And vector of parameters θ̂ is
obtained by minimizing a quadratic criterion using a nonlinear programming algorithm.

13

2.4.6 Hammerstein-Wiener Model (HW)

When a system output is non linearly dependent on its inputs, the relationship between
input and output can sometimes be decomposed into two or more interconnected elements.
In this scenario, linear dynamics of the system can be represented by a linear transfer
function [31], while the non-linearities of the system can be captured using nonlinear func-
tions such as algebraic polynomial expressions, piecewise-linear, basis function, wavelets,
neural networks, look-up tables and fuzzy models [32]. The Hammerstein-Wiener model
(HW) achieves this configuration as a series connection of static nonlinear blocks with
a dynamic linear block. One or two static nonlinear blocks in series with a linear block
are used in Hammerstein-Wiener models to describe the dynamic systems. In this study,
non-parametric models, based on HW model with the use of various combinations of non-
linear static block functions such as idTreePartition, idLinear and sigmoid network are
explored to identify models which can represent the dynamics of NWTs. Moreover, use
of sigmoid network with HW model can be classified in neural network model category.
Figure 2.6 illustrates the block diagram of a Hammerstein-Wiener model structure.

Figure 2.6: Hammerstein-Wiener Model

We could study this model as a combination of three series blocks. To formulate the
problem, we have equation 2.28 which is a nonlinear function transforming input data
u(t) into an internal variable w(t).

w(t) = f(u(t)) (2.28)

w(t) has the same dimension as u(t).

For the second block:
x(t) = B

F
w(t) (2.29)

where B/F is a linear transfer function transforming w(t) into x(t). B and F are the
polynomials similar to the polynomials (2.27), used in Output-Error model. For ny and nu
number of outputs and inputs respectively, the linear block is a transfer function matrix
containing entries:

Bji(q)
Fji(q)

(2.30)

where:
j = 1, 2, . . . , ny
i = 1, 2, . . . , nu

(2.31)

14

Finally for the third block:
y(t) = h(x(t)) (2.32)

where h is a nonlinear function that transforms the output of the linear block x(t) to the
system output y(t). Because f acts on the input part of the linear block, this function is
called the input nonlinearity. Similarly, because h acts on the output part of the linear
block, this function is called the output nonlinearity. The nonlinearities f and h are scalar
functions, one nonlinear function for each input and output channel. It is not necessary
to include both the input and the output nonlinearity in the model structure. When
a model contains only the input nonlinearity f, it is called a Hammerstein model. Simi-
larly, when the model contains only the output nonlinearity h, it is called a Wiener model.

Applications of Hammerstein-Wiener model are in wide areas, for example we can
mention modelling electro-mechanical system and radio frequency components, audio and
speech processing and predictive control of chemical processes. These models have a
useful block representation, transparent relationship to linear systems, and are easier to
implement than heavy-duty nonlinear. Therefore, they are very useful. The Hammerstein-
Wiener model can be used as a black-box model structure since it prepares a flexible
parameterization for nonlinear models. It is possible to estimate a linear model and try
to improve its quality by adding an input or output or both nonlinearities to this model
[33].

2.5 Deep Learning Model Structures

We can think of the general function approximators for f in equation 2.19 as a sequential
construction of several generalized linear regressions, i.e. repetitive use of linear regression
and static nonlinearities [34]. This is, loosely, the idea behind neural networks.

2.5.1 NARX Neural Network

The NARX neural network model can realize an overall input/output black-box mapping
by the multilayer perceptron (MLP) incorporating time delay unit and output feedback
in the input layer [35] [36]. The discrete-time input–output form is expressed in equation
2.19. In the process of identifying with NARX model, serial-parallel structure is usually
adopted that has two advantages as below. First, it can make feedback signal more
accurate and improve the success rate of identification. Second, serial-parallel structure
can easily be converted to parallel structure to proceed system simulation [2]. In order
to show NARX structural model visually, the general architecture of the NARX network
with three input’s tapped delays and four output’s tapped delays is shown in Fig. 2.8.
Here z−1 represents delay operator. Multilayer perceptron network acts as the nonlinear
system, and for example, in this figure, tansig (Hypertangent) transfer function is used
in the hidden layer while purelin function (linear) is used in output layer. This structure

15

(a) NARX NN Series-Parallel model used
for training phase

(b) NARX NN Parallel model used for
Prediction phase

Figure 2.7: NARX Neural Network Model

can be extended to other network dimensions according to the needs of the user. Usually,
the total number of parameters of the NARX Neural network includes tapped delays of
input and output, the number of hidden layers and neurons in each of the layers. The
parameters are usually obtained through heuristic process or optimization algorithm for
example, Levenberg-Marquardt algorithm.

Figure 2.8: NARX Neural Network Model Structure [2]

According to the input variable u(k), the hidden layer output at time k is obtained as:

Hi(k) = f1

[
nu∑
r=0

wiru(k − r) +
ny∑
l=1

wily(k − l) + ai

]
(2.33)

where wir is the connection weight between the input neuron u(k − r) and ith hidden
neuron. wil is the connection weight between the ith hidden neuron and output feedback

16

neuron y(k − l); ai is the bias of the ith hidden neuron; and f1(·) is the hidden layer
activation function.

Combining the hidden layer output, the final prediction can be given by

ŷj(k) = f2

[
nh∑
i=1

wjiHi(k) + bj

]
(2.34)

where wji is the connection weight between the ith hidden neuron and jth predicted output
nh; bj is the bias of the jth predicted output; nh is the number of hidden neurons; and
f2(·) is the output layer activation function.

The Fig. 2.8 is the classical one-hidden layer feed forward neural network. This is
what is called feedforwardnet in the MATLAB Deep Learning Toolbox. This network
corresponds to the so called TCN (Temporal Convolutional Network) [37]. The TCN
however uses a convolutional neural network instead of a feedforward neural network.

A variant is called cascadeforwardnet in the Deep Learning Toolbox as shown in Fig.
2.9. It corresponds to the case where all previous hidden units are used as regressors in
the next layer, not only the ones from the previous layer. That is, f2 will be a function
of u, f1(u), etc.

2.6 Model performance evaluation metric

In Matlab, Goodness of fit or simply fit is used to evaluate the performance of the model
over the validation data which is a form of normalised root mean-squared error (NRMSE)
and is expressed as

fit = 100
1−

√∑
k(y(k)− ŷ(k))2√

(y(k)−mean(y(k)))2

 (2.35)

where ŷ(k) is the model output and y(k) is the actual signal. Fit values may vary between
-Inf and 100. A fit value close to 100 means a perfect fit to reference data (zero error)
whereas -Inf refers to the worst fit.

2.7 Model Validation

Model validation means that we should gain confidence that the estimated model is ca-
pable of covering essential parts of the system behavior - not only for the estimation data
used for its estimation. A simple and common way to do this is Cross Validation: Collect
a validation data set, that is different from the estimation data set. Simulate the model
for the validation input and compare that model output with the measured validation
output. Make the comparison by eye inspection or compute a numerical measure of the
fit.

17

(a) 1-hidden layered
FeedForwardnet

(b) 1-hidden layered
Cascadeforwardnet

Figure 2.9: Variants of MultiLayer Perceptron

2.8 Akaike information criterion (AIC)

AIC estimates the relative amount of information lost by a given model: the less infor-
mation a model loses, the higher the quality of that model. AIC deals with the trade-off
between the goodness of fit of the model and the simplicity of the model. In other words,
AIC deals with both the risk of overfitting and the risk of underfitting. According to
Akaike’s theory, the most accurate model has the smallest AIC. Normalized AIC (nAIC)
is expressed as:

nAIC = log (V) + 2 ∗ np
N

(2.36)

where V is the loss function (see 2.1), np is the number of estimated parameters, and N
is the number of data points used for the estimation. In MATLAB, function Report.Fit
is used to access the value of AIC.

18

2.9 Introduction to OpenFOAM

The OpenFOAM (Open Source Field Operation and Manipulation) is an open-source
CFD software package. It is essentially a collection of text files written in C++ language
which is being operated entirely by text based commands to create applications. Due
to its free licensing, it allows the user to execute as many jobs/tasks as they need on
an unlimited number of processors for free. It gives the user complete control over the
software, allowing them to customize it to their specific needs. Users are free to modify
or contribute towards the development of OpenFOAM by improving the code, creating
useful libraries and toolboxes being shared freely in public domain. Solvers and utilities
are the intrinsic part of the software. Solvers are employed to solve a particular physical
problem whereas utilities are involved for data processing and handling.

OpenFOAM comes with large number of pre-installed solvers and finding its applica-
tions over large domains of science and engineering fields like Complex fluid flows, heat
transport, chemical processes, and electromagnetics. While OpenFOAM does not have a
graphical user interface, its customizability has made it a popular choice for users who
want to have some control over the physics and calculation of a problem solution. Many
commercial and academic organizations use OpenFOAM, and it has been used in numer-
ous peer-reviewed articles [38].

2.9.1 Governing Equations

In OpenFOAM, the Navier-Stokes equations for an incompressible, constant fluid viscosity
which governs the dynamics of fluid in the ocean and describing the conservation of
momentum and mass is employed. In cartesian coordinate system, these equations can
be expressed as:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
+ ρgx

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ µ

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
+ ρgy

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ µ

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
+ ρgz

(2.37)

where p is the pressure [Pa], gx, gy, gz are the components of acceleration due to gravity
[ms−2], µ is the dynamic viscosity of fluid [Pa.s], ρ is the density of fluid [kgm−3], t repre-
sents time [s] and u, v, w are the components of velocity [ms−1] in x, y and z directions
respectively.

And the continuity equation for incompressible fluid, ρ = constant can be expressed as:
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (2.38)

19

The above equations are solved by OpenFOAM using an Eulerian finite volume model
[39].

2.9.2 Volume of Fluid (VOF)

The most common method to capture the free surface and only one to simulate breaking
or overtopping waves is the VOF approach [40]. In OpenFOAM, the proportion of each
fluid present in each cell of the computation mesh (also known as volume fraction) is
determined using this method. The volume fraction of water, α, is captured by solving
the following additional equations:

∂α

∂t
+∇ · (Uα) = 0 (2.39)

where U is the velocity, and α is the volume fraction of water. Value of α varies between
0 to 1. For a mesh cell completely full of water, α =1, if it is full of air then α=0.
The density of the water-air mixture inside each cell of the mesh is determined by volume
fraction,α. The density of the mixture is expressed as:

ρ = αρwater + (1− α)ρair (2.40)

where ρwater is the density of water and ρair is the density of air.

Figure 2.10: Volume of fluid technique for capturing the free surface interface [3]

20

2.10 Introduction to Numerical Wavetanks

The accurate modeling of water wave behavior is a crucial topic in the field of maritime
engineering engineering. Physical wave tanks and flumes are commonly used to study
the effects of water waves on coastal structures and other associated coastal phenomena
[41] [42]. A paddle with a predefined motion produces the appropriate waves. In recent
years, the availability and capabilities of numerical wave tanks has increased dramatically
owing to increase in computational power. Numerical models applied to fluid flows are
becoming an increasingly significant tool for maritime engineering and can be utilized in
studies such as energy converters.

NWT can be implemented in both commercial and opensource software packages where
the users are provided with manuals, video tutorials, documentations and graphical user
interfaces (GUIs) [3]. In our case CFD solver package OpenFOAM was utilized. The
ability to predict wave energy converters efficiently and their response to wave loads is
reliant on accurate modeling of wave behavior and its hydrodynamic features. As a result,
during the previous decade, researchers worked towards development of numerical wave
tanks [43].

To simulate the ocean waves, researchers has used variety of numerical approaches.
Based on Boussinesq model, Wei [44] and Chawla [45] implemented a source function ap-
proach for generating ocean waves. Numerical models based on Boussinesq-type equations
have some drawbacks, such as the inability to model wave breaking and needs additional
modifications to account for energy dissipation [46]. To simulate small-amplitude waves
and solitary waves, Dong and Huang [47] developed 2D numerical wavetank based on
Navier-Stokes equations. In our case NWT uses InterFoamsrc solver, a modified version
of InterFoam which is designed to sovle Navier-Stokes and VOF equations for two incom-
pressible fluids.

Impulse source wavemaker is implemented to the Volume of Fluid RANS model for
incompressbile flow by introducing two terms to the impulse equation; a source term
rwρawm and dissipation term sand ρU used to implement a numerical beach [5] and is
expressed as:

∂(ρU)
∂t

+∇ · (ρUU) = −∇p+∇ ·T + ρFb + rwρawm + sand ρU (2.41)

where t denotes time, U denotes velocity, p is pressure, ρ denotes fluid density, T =
µ∇2U+ 1

3∇(∇·U) denotes viscous stress tensor, Fb is external body forces, rw is a scalar,
dimensionless variable that defines wavemaker region. Its value is 1 in the wavemaker’s
operating zone and zero everywhere else in the NWT domain. awm is the acceleration
input to the wavemaker at each cell centre within rw [48].

The strength of the dissipation is controlled by variable field sand, which starts at zero
in the central areas of the domain where the working wavefield is needed and gradually

21

increases towards the boundary over the length of the numerical beach. Its unit is s−1. In
the current implementation, the following equation 2.42 is utilized, which has been proved
to result in enough wave absorption by coupling with a numerical beach[49]. In Open-
FOAM setExprFieldsDict toolbox was used to implement such a function, representing
numerical beaches in the CFD solver:

sand(x) = −2 · sandMax

(
(lbeach − x)
lbeach

)3

+ 3 · sandMax

(
(lbeach − x)
lbeach

)2

(2.42)

Figure 2.11: Schematic of the numerical wave tank (NWT).

2.10.1 Geometry of Wave Tank

As the input wave is unidirectional, a 2D NWT was implemented to simplify the setup
and reduce computational costs. The NWT geometry is shown in Figure 2.11, The NWT
depth was set at 0.74 meters for shallow water. The wave probe location was 2λ from
the center of the wavemaker source region. The source centre was then positioned at
1λ upwave and 4.25λ downwave from two absorption beaches. The relax zone or source
region is rectangular in shape with dimension 4m in length and 0.555m in height.

2.10.2 Background Mesh

Mesh plays an important role for calculation. A trade-off between number of cells and
computation costs has to be made. Vertically the mesh is splitted into three regions:
The interface region spans the area where the free surface may appear during simulation
and is set with a high density of uniform vertical cell length. The air region has low cell
density and the mesh stretches with distance from the interface upwards to the atmosphere
boundary. The water region has moderate mesh density and the mesh stretches gradually
from interface down to the tank floor. The total cell count in this simulation was found
to be 385140 using checkMesh utility in OpenFOAM.

22

Figure 2.12: Background Mesh

2.10.3 Simulation

In this study NWT is based on InterFoamsrc solver, a modified version of InterFoam,
which uses impulse source wavermaker to produce waves. It solves for the fluid pressure,
velocity and volume of fraction. The simulation type was set to laminar flow. The solver
for the simulation was set in controlDict file of the system directory. Other important
simulation parameters, such as the simulation length and libraries to be linked, were also
set in the controlDict file. Selection of the finite-volume techniques for the simulation
were set in the fvSchemes file. Some of the results obtained are shown as:

Figure 2.13: Surface Wave Variation in NWT

Figure 2.14: Velocity variation in horizontal direction

23

Chapter 3

3 Numerical Study of Mass Spring Damper System

In this section, capabilities of system identification techniques manily ARX and NARX
Nerual Network applied to a linear damping oscillator is demonstrated. Let’s consider
a mass spring damper system as shown in figure 3.1 subjected to a multi-harmonic ex-

Figure 3.1: Mass Spring Damper System

citation. The mathematical model of such a system is given by the following ordinary
differential equation:

mü(t) + cu̇(t) + ku(t) = F (t) (3.1)

Although equation 3.1 can be solved both analytically and numerically but it is inter-
esting how black box modelling approach is effective in establishing a cause and effect
relationship in this case. First the direct problem (in which Force is given and model
needs to predict the response of the system, displacement) and followed by inverse prob-
lem (where displacement is given and force is predicted) are discussed. Four datasets are
taken into consideration, first one is a multi-harmonic excitation input equally spaced
over an interval of 0 to 100s with a random phase. All the data has been obtained by
solving equation 3.1 in MATLAB using ODE45. The mass, spring and damping constant
are taken as unity. Testing sets consists of both single frequency and multi-frequency
excitation spread over the same time interval. Only the first 500 time steps are shown in
the following figures to get a more closed view of the generated data:

24

0 10 20 30 40 50
Discrete Time Steps [s]

-1

0

1

D
is

pl
ac

em
en

t [
m

]

0 10 20 30 40 50
Discrete Time Steps [s]

-5

0

5

F
or

ce
 [N

]

Figure 3.2: Training Dataset (Multi-frequency harmonic signal)

0 10 20 30 40 50
Discrete Time Steps [s]

0

0.05

0.1

D
is

pl
ac

em
en

t [
m

]

0 10 20 30 40 50
Discrete Time Steps [s]

-2

0

2

F
or

ce
 [N

]

Figure 3.3: Testing Dataset I (Single frequency sinusoidal signal)

25

0 10 20 30 40 50
Discrete Time Steps [s]

-0.2

0

0.2

0.4

D
is

pl
ac

em
en

t [
m

]

0 10 20 30 40 50
Discrete Time Steps [s]

-5

0

5

F
or

ce
 [N

]

Figure 3.4: Testing Dataset II (Single frequency sinusoidal signal)

0 10 20 30 40 50
Discrete Time Steps [s]

-0.5

0

0.5

D
is

pl
ac

em
en

t [
m

]

0 10 20 30 40 50
Discrete Time Steps [s]

-2

0

2

F
or

ce
 [N

]

Figure 3.5: Testing Dataset III (Multi-frequency harmonic signal)

26

3.1 Direct MSD Problem

3.1.1 Autoregressive with Exogenous Input (ARX)

ARX time series model is a linear representation of a dynamic system in discrete time.
See Section 2.4.1 for further details. Matlab SYSID toolbox is used to find model order
with maximum goodness of fit. Since there is no delay in the system so nd = 0, With
the increase in ny > 3 and nu > 4 does not affect much to the loss function 2.1. For
model parameter [3 4 0], the training and testing achieved the best fit as is shown in the
following figures. The best ARX model obtained can be expressed in discrete form as:

A(z)y(t) = B(z)u(t) + e(t)
A(z) = 1− 2.891z−1 + 2.791z−2 − 0.9007z−3

B(z) = 0.001591 + 0.004765z−1 − 0.004788z−2 − 0.00152z−3

(3.2)

0 5 10 15 20 25
n

y

-30

-25

-20

-15

-10

-5

0

Lo
ga

rit
hm

 o
f l

os
s

fu
nc

tio
n

Figure 3.6: Variation of logarithm of loss function with ny, for nu = 4, nd = 0

27

0 5 10 15 20 25
n

u

-30

-25

-20

-15

-10

-5
Lo

ga
rit

hm
 o

f l
os

s
fu

nc
tio

n

Figure 3.7: Variation of logarithm of loss function with nu, for ny = 3, nd = 0

Performance
ARX Training Dataset Testing Datasets
[ny nu nd] Loss Function Fit (%) Testing I

Fit(%)
Testing II
Fit (%)

Testing III
Fit(%)

[1 3 2] 3.083× 10−2 70.21 −791.09 −286.6 45.38
[2 1 0] 1.116× 10−3 94.43 29.58 38.06 88.85
[2 1 1] 1.174× 10−4 99.20 88.41 92.78 98.41
[2 2 3] 9.767× 10−4 94.28 −105.64 −52.78 90.39
[3 4 0] 4.946× 10−7 99.99 99.75 99.99 99.77
[3 3 0] 2.084× 10−6 99.47 89.39 93.06 99.01
[3 4 1] 1.631× 10−6 99.68 91.93 96.67 99.48

Table 3.1: ARX Model Orders Vs Performance for Direct Problem

28

3.1.2 NARX Neural Network

The performance of a Non-linear Autoregressive with exogeneous variables using Neural
Network implemented in MATLAB SYSID is also investigated. In this case, after per-
forming optimization of hyper-parameters such as number of layers, neurons per layer,
type of activation function etc., a two layered Feedforward Neural Network with 8 nodes
per layer and linear activation function with nu = 0 and ny = 8 as Input and output
delays respectively produced desirable results which is shown in the following table:

Nodes per
Layers

[nu ny] Activation Func Loss Function
(refer 2.1)

[8 8] [2 4] [Purelin Purelin] MSE

Table 3.2: NARX Neural Network hyper-parameter selection for Direct MSD problem

Figure 3.8: Loss function vs Epocs

The training took almost 4 Epocs (number of passes of the entire training dataset the
machine learning algorithm has completed) to reach to convergence.

29

0 10 20 30 40 50
Discrete Time Steps [s]

-1

-0.5

0

0.5

1

D
is

pl
ac

em
en

t [
m

]

Comparsion of Models

ARX NARX-NN Real Output

Figure 3.9: Identified model performance comparison on Training dataset

0 10 20 30 40 50
Discrete Time Steps [s]

-0.05

0

0.05

0.1

D
is

pl
ac

em
en

t [
m

]

Comparsion of Models

ARX NARX-NN Real Output

Figure 3.10: Identified model performance comparison on Testing dataset I

30

0 10 20 30 40 50
Discrete Time Steps [s]

-0.1

0

0.1

0.2

0.3

0.4
D

is
pl

ac
em

en
t [

m
]

Comparsion of Models

ARX NARX-NN Real Output

Figure 3.11: Identified model performance comparison on Testing dataset II

0 10 20 30 40 50
Discrete Time Steps [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

D
is

pl
ac

em
en

t [
m

]

Comparsion of Models

ARX NARX-NN Real Output

Figure 3.12: Identified model performance comparison on Testing dataset III

31

Table 3.3 shows the comparison of performances of the models during the training and
testing. It can be stated that both the models were capable of simulating the response of
MSD system with a very high accuracy. But the training duration for ARX was almost
25 times shorter than NARX Neural Network as shown in Fig 3.19. Since the problem is
linear, therefore, It is not surprising to see the performance of ARX is similar to NARX.

Models Training per-
form. (%age)

Testing I Per-
form. (%age)

Testing II Per-
form. (%age)

Testing III Per-
form. (%age)

NARX-NN 99.99 99.86 99.96 99.96
ARX 99.84 99.75 99.70 99.99

Table 3.3: Model performance comparison on available data in case of Direct problem

3.2 Inverse MSD Problem

One of the advantages of the black box models is their success in solving inverse problems,
which can otherwise be difficult to solve by other means. One of the interesting inverse
problem of its kind can be simulation of required excitation subjected to the Mass-Spring-
damper system in order to produce a desired displacement. Although this problem can be
solved analytically, but it may be a good example to check the abilities of these models.
Furthermore, similar set of strategies and methods will be applied in more challenging
problems of NWTs. In this particular problem, model needs to map a relationship be-

0 5 10 15 20 25
n

y

-7

-6

-5

-4

-3

-2

-1

0

1

Lo
ga

rit
hm

 o
f l

os
s

fu
nc

tio
n

Figure 3.13: Variation of logarithm of loss function with ny, for nu = 8, nd = 0

32

tween given displacement and the required force. Application of ARX followed by NARX
Neural Network for this inverse problem will be described. Fig 3.13 and Fig 3.14 shows
the variation of loss functions w.r.t. model orders ny and nu respectively. MATLAB’s
inbuilt functions such as arxstruc and selstruc were useful in finding the best ARX model
parameters. From the Table 3.4, model with orders such as [3 11 0] and [0 8 0] per-

0 5 10 15 20 25
n

u

-6

-5

-4

-3

-2

-1

0

1

Lo
ga

rit
hm

 o
f l

os
s

fu
nc

tio
n

Figure 3.14: Variation of logarithm of loss function with nu, for ny = 0, nd = 0

formed better during training as well as testing than others with minimum number of
parameters required. But due to the lesser model complexity of later one, it was chosen
as the best model order. The performance of other model orders can be checked in Table
A.1.

Performance
ARX Training Dataset Testing Datasets
[ny nu nd] Loss Function Fit (%) Testing Fit

I(%)
Testing Fit
II (%)

Testing Fit
III (%)

[0 7 0] 8.089× 10−4 98.11 89.52 99.35 98.26
[0 8 0] 3.013× 10−4 98.85 95.27 99.14 99.31
[1 7 2] 5.544× 10−1 52.12 −75.07 69.87 57.10
[2 1 1] 19.05× 10−1 2.058 −0.09 −0.28 2.05
[3 4 1] 4.182× 10−1 27.58 −43.19 22.18 20.66
[3 11 0] 2.643× 10−4 98.80 95.65 99.21 99.35

Table 3.4: ARX Model Orders Vs Performance for Inverse Problem

33

The discrete ARX model obtained in this case is:

y(t) = B(z)u(t) + e(t)
B(z) = 409.8− 1514z−1 − 2574z−2 − 2766z−3 + 2766z−4 − 1028z−5 + 315z−6 − 45.04z−7

(3.3)
Additionally, use of NARX-Neural Network was also investigated in this case, a two hidden
layered MLP with 8 nodes per layer and linear activation functions with nu = 0 and ny
= 8 produced satisfactory results. The performance was evaluated based on Goodness
of Fit criteria (equation 2.35). Table 3.5 shows the comparison of performances of the
models for inverse problem during the training and testings.

0 10 20 30 40 50
Discrete Time Steps [s]

-6

-4

-2

0

2

4

F
or

ce
 [N

]

Comparsion of Models

ARX NARX-NN Real Output

Figure 3.15: Identified model performance comparison during training for Inverse prob-
lem

Models Training per-
form.(%)

Testing I Per-
form.(%)

Testing II
Perform.(%)

Testing III
Perform.(%)

NARX-NN 98.85 95.49 99.10 99.31
ARX 98.85 95.27 99.14 99.35

Table 3.5: Model performance comparison on available data in case of Inverse problem

Because of the excellent agreement between the real output and the model prediction
curves obtained from ARX and NARX models are almost perfectly overlapping with each
other. But ARX is much faster than NARX Neural Network as depicted in Figure 3.19.

34

0 10 20 30 40 50
Discrete Time Steps[s]

-2

-1

0

1

2

F
or

ce
 [N

]

Comparsion of Models

ARX NARX-NN Real Output

Figure 3.16: Identified model performance comparison during Testing Dataset I for
inverse problem

0 10 20 30 40 50
Discrete Time Steps [s]

-6

-4

-2

0

2

4

6

F
or

ce
 [N

]

Comparsion of Models

ARX NARX-NN Real Output

Figure 3.17: Identified model performance comparison during Testing Dataset II for
inverse problem

35

0 10 20 30 40 50
Discrete Time Steps [s]

-3

-2

-1

0

1

2

3

F
or

ce
 [N

]

Comparsion of Models

ARX NARX-NN Real Output

Figure 3.18: Identified model performance comparison during Testing Dataset III for
inverse problem

Direct Problem Inverse Problem
0

2

4

6

8

M
od

al
 T

ra
in

in
g

D
ur

at
io

n
[s

]

ARX NARX Neural Network

Figure 3.19: Model training duration comparison

36

4 Numerical Study of Wave Tank

4.1 Data generation and pre-processing

In this study, first the surface waves were generated in the numerical wave tank (NWT)
subjected to the multi-frequency harmonic excitations at the source region of the NWT as
shown in Fig 2.11. The simulation was carried out in OpenFOAM solver. Each simulation
lasted for almost 4 hours on an average to finish, and ran in parallel processing over 4
CPU i7-7700k cores. All Input signals were multi-sinusoidal in nature, equally spaced
frequency with a random phase based on Pierson Moskowitz Spectrum. Python was used

Figure 4.1: Frequency Spectrum of Input Excitation

to extract data from the OpenFOAM which was then processed in MATLAB and the
results for different input signals are shown in the following figures. The actual datasets
included 20001 data points. After looking carefully into the fast fourier transformation
of the training dataset, it is convenient and worth to downsize the sampling frequency
by 1/10 of the actual size using an inbuilt MATLAB function, interp1. Otherwise the
system identification process becomes time consuming to carry out on a normal computer.
Results obtained from the OpenFOAM simulations for the corresponding inputs are shown
in the following figures. A single dataset is used for training of all models and is named as
’Training dataset’ and rest of the datasets are used for validation of models. All datasets
consist of different magnitudes of amplitudes and frequency ranges.

37

0 50 100 150 200
Discrete Time Steps [s]

-0.02

0

0.02
S

ur
fa

ce
 W

av
e

E
le

va
tio

n
[m

]

0 50 100 150 200
Discrete Time Steps [s]

-0.2

0

0.2

E
xc

ita
tio

n
[N

]

Figure 4.2: Surface waves generated in OpenFOAM. (Training Dataset)

0

0.05

0.1
Surface Wave Elevation

-1440
-1080

-720
-360

0
360
720

0

0.5
Excitation

10 -1 10 0 10 1 10 2
-540
-360
-180

0
180
360

FFT of Training Dataset

Frequency (rad/s)

M
ag

ni
tu

de
 (

ab
s)

 ;
P

ha
se

 (
de

g)

Figure 4.3: FFT of Training Dataset

38

0 50 100 150 200
Discrete Time Steps [s]

-0.1

0

0.1

S
ur

fa
ce

 W
av

e
E

le
va

tio
n

[m
]

0 50 100 150 200
Discrete Time Steps [s]

-0.5

0

0.5

E
xc

ita
tio

n
[N

]

Figure 4.4: Surface waves generated in CFD solver for an Excitation with the highest
amplitude (Testing Dataset I)

0 50 100 150 200
Discrete Time Steps [s]

-0.02

0

0.02

S
ur

fa
ce

 W
av

e
E

le
va

tio
n

[m
]

0 50 100 150 200
Discrete Time Steps [s]

-0.2

0

0.2

E
xc

ita
tio

n
[N

]

Figure 4.5: Surface waves generated in CFD solver for a medium sized Excitation
(Testing Dataset II)

39

0 50 100 150 200
Discrete Time Steps [s]

-5

0

5

S
ur

fa
ce

 W
av

e
E

le
va

tio
n

[m
]

#10 -3

0 50 100 150 200
Discrete Time Steps [s]

-0.05

0

0.05

E
xc

ita
tio

n
[N

]

Figure 4.6: Surface waves generated in CFD solver for an Excitation with the smallest
amplitude (Testing Dataset III)

4.2 Direct Numerical Wavetank (NWT) problem

After acquisition of data, the second most important task is to find out a model which
can map a non-linear relationship between the desired surface wave elevation generated
at some probe distance in NWT to the required Input (excitation). Additionally, there is
a delay at the beginning of each output signal which accounts to the fact that the probe
is located at some distance away from the point source in NWT. It is also desirable that
the identified model should also capture this time varying delay accurately. Since these
generated waves are multi-frequency in nature, therefore, require different amount of time
to reach to the probe with different velocities.

In this section, black-box models such as ARX, NARX, HW and OE models are trained
over a single training example, capturing the most of the dynamics of the system then
tested over different datasets with amplitude variations of almost 10 times the amplitude
of the training dataset. Moreover, a comparison of models based on individual complexity,
computational cost and accuracy is also presented at the end.

4.2.1 Autoregressive with External Inputs (ARX)

For ARX model, MATLAB’s inbuilt functions such as arxstruc and selstruc with AIC
criteria can provide some intuitive ideas about the initial model order selections. In this
case, surface plots consisting of variation of loss function with respect to ny and nu for

40

different values of delay nd are shown in the Fig. 4.7. It can be observed that higher

Figure 4.7: Variation of loss function (see 2.1) w.r.t. ny, nu, for different values of nd

the value of delay nd is chosen, smaller the value of nu is required to find the optimum
model order at which loss function value is minimum. The value of the delay nd if set to
94 was found to be the best performing model during the training and validation while
maintaining a trade off between lower model complexity and higher accuracy.

For ny > 2 loss function has no significant reduction, while keeping nu = 103. Similarly,
for ny = 2, nu = 103 provides a model order which performs better across all datasets
and has lower number of parameters,thus lesser complex. With this criteria, ARX with
model order [2 103 94] was chosen to be the best performing ARX model while looking into
different model order configurations from the following Table 4.2. To find the performance
of the ARX with the other model orders, refer to Table A.2 in Appendix. The performance
of the arx during training and validation with only the first 800 data points is shown in
Fig 4.10.

41

0 5 10 15 20
n

y

-16

-15

-14

-13

-12

-11

-10

-9

-8

Lo
ga

rit
hm

 o
f l

os
s

fu
nc

tio
n

Figure 4.8: Variation of logarithm of loss function with ny for nu = 103, nd = 94

0 20 40 60 80 100
n

u

-14.5

-14

-13.5

-13

-12.5

-12

-11.5

Lo
ga

rit
hm

 o
f l

os
s

fu
nc

tio
n

Figure 4.9: Variation of logarithm of loss function nu for ny = 2, nd = 94

42

Performance
ARX Training Dataset Testing Datasets
[ny nu nd] Loss Function Fit (%) Dataset I

Fit (%)
Dataset II
Fit (%)

Dataset III
Fit (%)

[2 103 94] 1.057× 10−7 86.83 83.50 91.27 70.05
[2 108 94] 1.121× 10−6 86.09 81.92 91.28 68.51
[3 103 94] 2.451× 10−7 87.67 81.20 90.69 68.45
[4 103 94] 1.377× 10−7 87.56 80.61 89.52 67.65
[5 103 94] 6.501× 10−8 87.96 80.91 90.81 69.41
[6 103 94] 2.558× 10−8 87.39 80.37 89.49 68.03
[7 103 94] 1.004× 10−8 87.70 79.04 89.36 69.50
[8 103 94] 5.331× 10−9 87.33 80.34 89.37 68.13

Table 4.1: Goodness of fit of ARX with different model orders for Direct NWT problem

0 20 40 60 80
-0.02

0

0.02
Training

0 20 40 60 80
-0.1

0

0.1
Testing I

0 20 40 60 80
-0.02

0
0.02

S
ur

fa
ce

 W
av

e
E

le
va

tio
n

[m
]

Testing II

0 20 40 60 80
Discrete Time Steps [s]

-5

0

5
#10 -3 Testing III

ARX Real Output

Figure 4.10: Performance of ARX model during training and testing for Direct NWT

4.2.2 Output Error (OE) Model

The Output Error (OE) method deals with minimizing a nonlinear least square (NLS)
loss function, using a nonlinear programming algorithm e.g. Levenberg-Marquardt (LM).

43

In this case the best model order at which training as well as validation results obtained
were satisfactory was found to be [99 3 88] with NLS as the loss function and LM opti-
mization algorithm over a maximum of 30 iterations. Here the first term in the model
order represents the number of the past inputs required, followed by the model outputs
and finally the input delay parameter, for further details, see section 2.4.5. The results
obtained are shown in Table 4.2.

4.2.3 Hammerstein-Wiener (HW) Model

The dynamics of the required surface wave elevation to the given excitation was repre-
sented by a linear transfer function and the associated non-linearities were added using
static nonlinear functions placed at the input and the output of the linear system. For
an estimation of the linear transfer function for the Hammerstein-Wiener (HW) model,
various pole-zero configurations were explored. The effect on the loss function and the
fitness percentage for the various pole-zero and delay configurations, [nb nf nk] to the
linear dynamic subsystem of the HW model can be seen in appendix Table A.4, where
nb is the number of zeros plus 1, nf is the number of poles of polynomials B and F

respectively used in linear transfer function block, and nd is the input delay (see section
2.4.6, for further details). The optimal pole-zero and deadtime configuration was chosen
after examining the maximum fitness percentage values obtained during both training
and validation for various model order configurations and was found to be [103 3 96] with
nonlinear least square loss function, and Levenberg-Marquardt as optimization algorithm
over a maximum of 50 iterations. Moreover, a sigmoidal layer of 14 units and piecewise
linear functions of 10 units, were used as static functions at the input and output of the
linear system block respectively to obtain this best peforming HW model.

4.2.4 Nonlinear Autoregressive with exogeneous variables

Nonlinearities can be added to the ARX model found by including nonlinear mapping
functions, such as Sigmoid network or Wavelet network or Partition tree network in the
model. A Sigmoid network for instance, is a sum of 3 components - a linear function, an
offset term, and a nonlinear function (see section 2.4.4 to get further details). Here, a
partition tree network of 2 units together with the best performing ARX model ([2 103
94]) enhanced the ARX model performance slightly and can be seen in Table A.3 of the
Appendix.

Additionally, use of NARX-Neural Network was also investigated in this case. After
performing an hyperparameter optimization search, a two hidden layered cascaded neural
network with 2 and 4 hyperbolic tangent activation functions in first and second layer
respectively and a linear function at the output layer with model order nu = 3, ny = 103
and nd = 94 as shown in the Fig. 4.11 produced satisfactory results during training as
well as testing.

44

Figure 4.11: Cascade Neural Network Structure for Direct NWT problem

Figure 4.12: Loss Function vs Epochs during NARX Neural Network

Models Model or-
der

Training
perf.(%)

Testing I
Perf.(%)

Testing II
Perf.(%)

Testing III
Perf.(%)

ARX [2 103 94] 86.83 81.81 91.27 70.05
NARX NN [3 103 94] 86.26 80.62 91.01 70.93
OE [99 3 88] 87.52 80.55 90.56 68.21
HW [103 3 96] 87.10 81.41 92.73 71.79

Table 4.2: Model performance comparison during training and validation for NWT
direct problem

Only the first 800 data points are shown in the following figures to get a more detailed
view of model performances. All of the models used, performed comparably well during
training and testing. But it was rather the use of simple yet powerful machine learning

45

0 20 40 60 80
Discrete Time Steps [s]

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
S

ur
fa

ce
 W

av
e

E
le

va
tio

n
[m

]

Comparsion of Models

ARX NARX NN OE HW Real Output

Figure 4.13: Model performance during Training.

0 20 40 60 80
Discrete Time Steps [s]

-0.1

-0.05

0

0.05

0.1

S
ur

fa
ce

 W
av

e
E

le
va

tio
n

[m
]

Comparsion of Models

ARX NARX NN OE HW Real Output

Figure 4.14: Model performance during Testing I.

model such as ARX, which surprisingly captured the nonlinear behaviour of the NWT.
Based on the model training duration required for each model, from Fig 4.17, it can be
deduced that model training of ARX was almost 13 times shorter than NARX neural

46

0 20 40 60 80
Discrete Time Steps [s]

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
S

ur
fa

ce
 W

av
e

E
le

va
tio

n
[m

]

Comparsion of Models

ARX NARX NN OE HW Real Output

Figure 4.15: Model performance during Testing II.

0 20 40 60 80
Discrete Time Steps [s]

-5

-4

-3

-2

-1

0

1

2

3

4

S
ur

fa
ce

 W
av

e
E

le
va

tio
n

[m
]

#10 -3 Comparsion of Models

ARX NARX NN OE HW Real Output

Figure 4.16: Model performance during Testing III.

Network, 11 times shorter than nonlinear HW model and 4 times shorter than nonlinear
OE model. In terms of model complexity, NARX-NN and HWmodels consist of the largest

47

number of model parameters, 106 followed by ARX, 105 and finally nonlinear Output
Error model, 102. But all models other than ARX are nonlinear in nature and involve
nonlinear function in their structure which therefore increases the model complexity.

0.613

8.29

2.27

6.84

ARX NARX NN OE HW
0

2

4

6

8

10
M

od
al

 T
ra

in
in

g
D

ur
at

io
n

[s
]

Figure 4.17: Model training duration comparison for NWT direct problem

Training Testing I Testing II Testing III
0

20

40

60

80

100

M
od

al
 P

er
fo

rm
an

ce
 (

%
)

ARX NARX NN Output Error HW

Figure 4.18: Model performance comparison over training and testing datasets

48

4.3 Nonlinear Inverse Numerical Wave Tank Problem

Finally, a highly significant problem yet difficult to solve with OpenFOAM, at least in
its current setup, is the inverse problem of NWT, where it is required to determine the
’Excitation’ or ’Impulse’ applied at the source location to produce a desired Surface Wave
Elevation at some probe length in the numerical Wavetank. In this problem, we have
chosen the same set of data obtained after performing CFD simulations (see section 4.1).
One of the datasets named as ’Dataset A’ was split into training and testing on a 55:45
ratio as shown in Fig 4.19. Other datasets were also checked against their suitability
to train the models but ’Dataset A’, which consists of manily medium sized amplitude
waves, emerged as the best training set upon which the models performed well during the
validation. Here the data labelled as "Surface Wave Elevation", obtained from the CFD
solver, was fed into the identified models as the Input and the "Impulse" is the required
output, the models should predict/simulate. For further model validations, additional
datasets named as ’B’, ’C’ and ’D’ were used. To simplify the problem, all the signals
were shifted by 200 time steps to compensate for the delay in "Surface Wave Elevation"
obtained from CFD simulations, owing to the fact that the probe in the NWT is located
at some distance away from the source region.

0 50 100 150
Discrete Time Steps [s]

-0.2

-0.1

0

0.1

0.2

Im
pu

ls
e

[N
]

0 50 100 150
Discrete Time Steps [s]

-0.02

-0.01

0

0.01

0.02

S
ur

fa
ce

 W
av

e
E

le
va

tio
n

[m
]

Training
Testing

Figure 4.19: Dataset A with medium sized amplitude for inverse NWT problem

Black-Box models such as ARX, Hammerstein-Wiener and Output Error models were
investigated and the accuracy of the models was tested on each available datasets and
finally a comparison of models based on individual complexity, computational cost and
accuracy is presented at the end.

49

0 20 40 60 80 100
Discrete Time Steps [s]

-0.05

0

0.05

Im
pu

ls
e

[N
]

0 20 40 60 80 100
Discrete Time Steps [s]

-5

0

5

S
ur

fa
ce

 W
av

e
E

le
va

tio
n

[m
]

#10 -3

Figure 4.20: Dataset B with the smallest amplitude used for model validation.

0 20 40 60 80 100
Discrete Time Steps [s]

-0.2

0

0.2

Im
pu

ls
e

[N
]

0 20 40 60 80 100
Discrete Time Steps [s]

-0.02

0

0.02

S
ur

fa
ce

 W
av

e
E

le
va

tio
n

[m
]

Figure 4.21: Dataset C with comparable amplitude used for model validation.

50

0 20 40 60 80 100
Discrete Time Steps [s]

-0.5

0

0.5

Im
pu

ls
e

[N
]

0 20 40 60 80 100
Discrete Time Steps [s]

-0.1

0

0.1

S
ur

fa
ce

 W
av

e
E

le
va

tio
n

[m
]

Figure 4.22: Dataset D with the highest amplitude for additional validation

4.3.1 Autoregressive with External Inputs (ARX)

For ARX model, MATLAB’s inbuilt functions such as arxstruc and selstruc with AIC
criteria can provide some intuitive ideas about the initial model order selections. In this
case, there is no need to keep the delay as it is already compensated during preprocessing
of data. Surface plot consisting of variation of loss function with respect to ny and nu for
value of delay nd = 0 is shown in the Fig. 4.23. For ny > 7 loss function has no significant

Figure 4.23: Variation of loss function w.r.t. ny and nu for nd = 0

51

0 10 20 30 40 50
n

y

-40

-35

-30

-25

-20

-15

-10

-5

Lo
ga

rit
hm

 o
f l

os
s

fu
nc

tio
n

Figure 4.24: Variation of logarithm of loss function with ny for nu = 93, nd = 0

0 50 100 150 200
n

u

-30

-29.5

-29

-28.5

-28

-27.5

-27

-26.5

-26

Lo
ga

rit
hm

 o
f l

os
s

fu
nc

tio
n

Figure 4.25: Variation of logarithm of loss function with nu for ny = 7, nd = 0

reduction, while keeping nu = 93. Similarly, for ny = 7, nu = 93 provides a model order
which performs better across all datasets and has lower number of parameters, thus lesser
complex. With this criteria, ARX with model order of [7 93 0] was chosen to be the best
performing ARX model while looking into different model order configurations in Table
4.3. To find the performance of the ARX model with different model order configurations,
refer to Table A.5 in Appendix. Fig. 4.26 shows the comparison of ARX model response

52

0 10 20 30 40 50 60 70 80
-0.2

0
0.2

Training

100 110 120 130 140 150 160 170 180
-0.2

0
0.2

Testing A

0 10 20 30 40 50 60 70 80
-0.05

0
0.05

Im
pu

ls
e

[N
] Testing B

0 10 20 30 40 50 60 70 80
-0.2

0
0.2

Testing C

0 10 20 30 40 50 60 70 80
Discrete Time Steps [s]

-0.5
0

0.5
Testing D

ARX Real Output

Figure 4.26: Performance of ARX model during training and testing for Inverse NWT

and the actual output for training as well as testing datasets. Here only first 800 data
points are shown.

Performance
ARX Training Dataset Testing Datasets
[ny nu nd] Loss Function Fit (%) Testing

A Fit(%)
Testing
B Fit(%)

Testing
C Fit(%)

Testing
D Fit(%)

[7 92 0] 2.069× 10−5 91.40 92.32 83.19 89.58 72.31
[7 93 0] 2.159× 10−5 92.85 92.25 84.18 90.04 72.72
[7 94 0] 2.323× 10−5 92.63 90.18 82.38 89.83 75.82
[7 95 0] 2.518× 10−5 92.48 90.10 82.27 89.83 75.95
[7 100 0] 3.585× 10−5 91.46 79.34 78.15 85.63 71.72
[7 120 0] 5.522× 10−5 79.27 88.39 76.30 85.46 64.86
[10 93 0] 2.259× 10−5 87.33 77.77 74.17 81.19 67.84

Table 4.3: Comparsion of goodness of fit values for various ARX model orders for Inverse
NWT problem

53

4.3.2 Output Error (OE) Model

The OE method deals with minimizing a nonlinear least square loss function, that is
based on the output error εOE, using a nonlinear programming algorithm e.g. Levenberg-
Marquardt (LM). This error, εOE is between the measured output y of the system and
the output ŷM of the transfer function model (see section 2.4.5, for further details). In
this case the best model order which performed well during training as well as testing
was found to be [96 3 0] with the nonlinear least square and LM algorithms used over a
maximum of 30 iterations. Here the first term in the model order represents the number
of the past inputs required, followed by the model outputs and finally the input delay
parameter. The results obtained are shown in Table 4.4. To check the performance of OE
model for other model order configurations, see Table A.6 in Appendix.

4.3.3 Hammerstein-Wiener (HW) Model

The dynamics of the required impulse to the given surface wave elevation was represented
by a linear transfer function and the associated nonlinearities were added using static
nonlinear functions placed at the input and the output of the linear system. For an
estimation of the linear transfer function, various pole-zero configurations were explored.
The effect on the loss function and the fitness percentage for the various pole-zero and
delay configurations, [nb nf nk] to the linear dynamic subsystem of the HW model can
be seen in appendix Table A.7, where nb is the number of zeros plus 1, nf is the number
of poles of polynomials B and F respectively used in the linear transfer function block,
and nd is the input delay (see section 2.4.6). The optimal model order configuration was
chosen after examining the maximum fitness values obtained during both training and
validation for different model orders and was found to be [141 6 0] with a nonlinear least
square loss function, Levenberg-Marquardt as optimization algorithm for a maximum of
50 iterations. Moreover, 8 and 11 units of piecewise linear functions were used as the
static input and output functions to the linear system block respectively to obtain this
best performing HW model.

Models Model
Order

Training
per-
form(%)

Testing
A Per-
form(%)

Testing
B Per-
form(%)

Testing
C Per-
form(%)

Testing
D Per-
form(%)

ARX [7 93 0] 92.85 92.25 84.18 90.14 72.72
OE [96 3 0] 89.97 89.81 80.03 86.46 65.85
HW [141 6 0] 86.73 90.32 80.01 87.03 72.84

Table 4.4: Model performance comparison on available data in case of Inverse NWT
problem

54

0 20 40 60 80
Discrete Time Steps [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Im

pu
ls

e
[N

]

Comparsion of Models

ARX OE HW Real Output

Figure 4.27: Model performance comparison during training for inverse NWT .

100 120 140 160 180
Discrete Time Steps [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Im
pu

ls
e

[N
]

Comparsion of Models

ARX OE HW Real Output

Figure 4.28: Model performance comparison during testing Dataset A for inverse NWT.

55

0 20 40 60 80
Discrete Time Steps [s]

-0.05

0

0.05
Im

pu
ls

e
[N

]

Comparsion of Models

ARX OE HW Real Output

Figure 4.29: Model performance comparison during testing Dataset B for inverse NWT.

0 20 40 60 80
Discrete Time Steps [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Im
pu

ls
e

[N
]

Comparsion of Models

ARX OE HW Real Output

Figure 4.30: Model performance comparison during testing Dataset C for inverse NWT.

56

0 20 40 60 80
Discrete Time Steps [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Im

pu
ls

e
[N

]

Comparsion of Models

ARX OE HW Real Output

Figure 4.31: Model performance comparison during testing Dataset D for inverse NWT.

Only the first 800 data points are shown in the above figures in order to get a more
detailed view of model performances. Attempt to use NARX Neural Network in this
case was also explored. Performance of NARX Neural Network was found descent dur-
ing training but deteriorated during validation (see Table A.8 in Appendix). Therefore,
additional efforts are required in fine tuning of its hyper-parameters in future. All of the
models used, performed comparably well during training and testing. But it was again
the ARX, which captured most of the dynamics of the system with the highest accuracy.
Based on the time duration required to train each model, from Fig 4.17, training duration
of ARX was almost 4 times shorter than Output Error model and 10 times shorter than
Hammerstein Wiener model. In terms of model complexity, Output Error model consists
of lesser number of model parameters, 99, followed by ARX, 100 and finally Hammer-
stein Wiener model, 147. All the models except ARX employed are nonlinear in nature,
therefore more complex than ARX.

Moreover, in both cases, direct and inverse NWT problems, all the models were trained
over for just a single training example of medium sized amplitude and were tested against
all other datasets with different amplitudes. It was exciting to see the validation perfor-
mance of all the models especially ARX was satisfactory when subjected to inputs with
amplitudes varying by a manifold of 10 times the amplitude of the training dataset.

57

0.378

1.45

3.71

ARX OE HW
0

0.5

1

1.5

2

2.5

3

3.5

4

M
od

al
 T

ra
in

in
g

D
ur

at
io

n
[s

]

Figure 4.32: Model training duration comparison for Inverse NWT problem

Training Testing A Testing B Testing C Testing D
0

10

20

30

40

50

60

70

80

90

100

M
od

al
 P

er
fo

rm
an

ce
 (

%
)

ARX Output Error Hammerstein Wiener

Figure 4.33: Model performance comparison over training and testing datasets for In-
verse NWT problem

58

5 General Conclusions and Perspective

The main objective of this thesis is to improve the generation of waves in numerical wave
tanks (NWTs) by using data-driven system identification techniques including machine
learning and deep learning and create models mapping the relationship between the sur-
face wave elevation in NWT to the required impulse source function. Another objective
is to implement a NWT in a CFD solver, OpenFOAM with a impulse source wave maker
and carry out multi-phase simulations and generate free surface waves which are then uti-
lized for training and validating identified models. The first chapter states this objective
and the motivation behind this work undertaken.

The second chapter introduces the system identification techniques, optimization al-
gorithms and use of various classical and modern state-of-the-art black-box modelling
approaches such as ARX, Hammerstein-Wiener (HW), NARX and Output-Error Mod-
els. Hybrid models involving use Deep learning for system identification such as NARX
Neural Network is also discussed. In the last part of this chapter, a brief overview of
OpenFOAM, Numerical wave tank and the theory behind its implementation and other
necessary tools and set-up information required to carry out multiphase simulations in
opensource CFD solver is presented to obtain gravity waves in NWT.

In the third chapter a practical application of data-driven system identification to a
mass-spring-damper system is introduced. The ability of both ARX and Narx Neural
Network to model the dynamics of such a system is demonstrated. Moreover, the inverse
of this forward problem, and the relative accuracy, along the time duration to train such
models is clearly presented. It is found that ARX is much faster (almost 25 times) than
NARX Neural Network. Both the model structures bears the same level of accuracy over
the training and validation data.

In the fourth chapter, an open source CFD solver, OpenFOAM, has been used to
implement a numerical wave tank. The study is based on the interFoamsrc solver, which
is a modified interFoam solver for incompressible multiphase flow problems. The solver
uses the finite volume method for the spatial discretization of equations and applies the
VOF approach for the free surface modeling. In the next step, after acquisition of data
from the CFD solver, system identification techniques are used and comparative study
of four different black box models namely. ARX, NARX Neural Network, Hammerstein-
Wiener and output are shown, each model is attempting to map the nonlinear relationship
between the surface wave elevation at some probe length in NWT to the applied impulse
source excitation. Results obtained during training and validation from all these models
are compared against each other based on the model complexity, computational cost and
accuracy. All models performed relatively well in terms of accuracy but ARX stand out
as the most favourable model owing to its highest accuracy, minimum model training
duration and relatively lower complexity.

At the end of this chapter, an inverse problem of this forward NWT problem is pre-

59

sented. Such a problem is not solvable in OpenFOAM, which is still lacking the ability
to directly correlate the required impulse source wavemaker amplitude to the given sur-
face wave elevation. The current method of generating waves in NWT is an inefficient
approach based on hit and trial method or iterative calibrations which is computationally
intensive, highly time consuming and yet uncertain to produce the desired free surface
waves in NWT. To counter this problem, system identification methods such as ARX,
Hammerstein-Wiener and OE models are put forth. The results obtained are satisfactory
and are validated over three different datasets. Based on the criteria of maximum accuracy
with minimum model complexity, it is shown that ARX model is efficient to establish a re-
lationship between the required excitation to the desired surface wave elevation in NWT.
It was demonstrated that ARX, if trained for an input of medium sized amplitude can
validate satisfactorily over the data having amplitude variation of almost 10 times the
amplitude of the training dataset both in forward and inverse NWT problems.

In general, all identified models were able to simulate the response of the dynamic
systems well when subjected to the same input conditions during the forward problems
as well as performed satisfactory for inverse problems too but such models may not be
able to extrapolate well when subjected to input condition outside of the frequency and
amplitude ranges they are trained of achieving global minimum which is a limitation of
black box modelling. Additionally, the advantages of using these models over the classical
Deep learning is such that these models do not require large number of training examples
and model gets trained within a very short duration of time. Unlike traditional Neural
networks e.g. Artificial Neural Network (ANN), which can act as universal functional
approximators, but the performance of such models is highly dependent on the amount
of the available data to train these models. Moreover, these black box models are very
complex in nature and can incur much higher computational costs.

The following future works and perspectives can be mentioned

• Use of classical neural network approach e.g. ANN is beyond the scope of this study
due to the limited amount of available data with restricted computational resources
and time limitation. It will be noteworthy to check the simulation performance of
such models against other discrete model structures discussed earlier.

• Recent advance in deep learning called Physics-Informed Neural Networks (PINNs),
for learning unknown dynamics and constitutive relations can be another area to
explore [50]. Instead of replacing known physics with purely data-driven deep neural
networks in a wholesale fashion, the idea is to blend physical constraints into the
workflow in an attempt to combine the best of both worlds. One of the advantages
of this method is its ability to train models over limited datasets which should be
investigated in future studies.

60

Reference
[1] MATLAB. What are Nonlinear ARX models. Mathsworks.Inc, 2021. [Online; ac-

cessed 21-Dec-2021].

[2] W. Hongwei and S. Xiaodong . Nonlinear system identification based on narx
network. In 2015 10th Asian Control Conference (ASCC), volume 1, pages 1–6.
IEEE, 2015.

[3] J. Davidson, M. Cathelain, L. Guillmet, T. L. Huec, and J. Ringwood. Implemen-
tation of an openfoam numerical wave tank for wave energy experiments. In 11th
European Wave and Tidal Energy Conference (EWTEC), 2015.

[4] J. Choi and S. B. Yoon. Numerical simulations using momentum source wave-maker
applied to RANS equation model, volume 56. Coastal Engineering, 2009.

[5] P. Schmitt, C. Windt, J. Davidson, J. V. Ringwood, and T. Whittaker. The Efficient
Application of an Impulse Source Wavemaker to CFD Simulations. Journal of Marine
Science and Engineering, 2019.

[6] L. Ljung. System Identification: Theory for the User. 2nd ed, Theory for the User
Englewood Cliffs, NJ, USA, 1999.

[7] O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural
Networks and Fuzzy Models. New York, NY, USA: Springer, 2001.

[8] G. Golub C. Van Loan. Matrix Computations. 4th ed. Baltimore, MD, USA, The
Johns Hopkins Univ. Press„ 2012.

[9] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint, 2014.

[10] D. P. Kingma J. L. Ba. ADAM: A METHOD FOR STOCHASTIC OPTIMIZA-
TION. arXiv preprint, 2017.

[11] K. Madsen H.B Nielsen O. Tingleff. Methods for Non-Linear Least Squares Prob-
lems. Technical University of Denmark, 2004.

[12] J. Richalet, S.Abu. el Ata-Doss, and A. Coïc. Global Identification and Optimal Input
Design, volume 24r. IFAC Proceedings Volumes, 1991.

[13] Himmelblau and M. David. Applied nonlinear programming. McGraw-Hill Book
Company, New York, 1972.

[14] J. E. Dennis and B. Schnabel. Robert. Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Society for Industrial and Applied Mathematics;
Illustrated edition, 1987.

61

[15] S. Boyd and L. Vandenberghe. Convex Optimization Equations. Cambridge Univer-
sity Press, 2004.

[16] Y. Chetouani. Using ARX and NARX approaches for modeling and prediction of the
process behavior: application to a reactor-exchanger, volume 3. Asia-Pacific Journal
of Chemical Engineering, 2008.

[17] D.E. Rivera and S.V. Gaikwad. Systematic techniques for determining modelling
requirements for SISO and MIMO feedback control, volume 5. Journal of Process
Control, 1995.

[18] X. Liu and Y. Zhu. ARX Model Estimation of Multivariable Errors-in-Variables
Systems, volume 51. IFAC-PapersOnLine, 2018.

[19] M.L. Fravolini, A. Ficola, and M. La Cava. Optimal operation of the leavening process
for a bread-making industrial plant, volume 60. Journal of Food Engineering, 2003.

[20] H.U. Frausto, J. G. Pieters, and J. M. Deltour. Modelling Greenhouse Temperature
by means of Auto Regressive Models, volume 84. Biosystems Engineering, 2003.

[21] J. V. Ringwood, P. C. Austin, and W. Monteith. Development of ARX model based
off-line FDD technique for energy efficient buildings, volume 22. Renewable Energy,
2001.

[22] H. Yoshida and S. Kumar. Forecasting weekly electricity consumption, volume 15.
Energy Economics, 1993.

[23] L. Ljung and B. Wahlberg. Asymptotic properties of the least-squares method for es-
timating transfer functions and disturbance spectra, volume 24. Advances in Applied
Probability, 1992.

[24] M. Galrinho, N. Everitt, and H.Hjalmarsson. ARX modeling of unstable linear sys-
tems, volume 75. Automatica, 2017.

[25] S. A. Billings. NARMAX Methods in the Time, Frequency,and Spatio-Temporal Do-
mains. John Wiley Sons, Ltd., West Sussex, United Kingdom„ 2013.

[26] A. Leva and L.Piroddi. NARX-based technique for the modelling of magneto-
rheological damping devices, volume 11. Smart Materials and Structures, 2002.

[27] A. Rahrooh and S. Shepard. Identification of nonlinear systems using NARMAX
model, volume 79. Nonlinear Analysis: Theory, Methods Applications, 2009.

[28] SA. Billings and H. L. Wei. The wavelet-NARMAX representation: A hybrid model
structure combining polynomial models with multiresolution wavelet decompositions,
volume 36. International Journal of Systems Science, 2005.

62

[29] W. Zhang, J. Zhu, and D. Gu. Identification of robotic systems with hysteresis using
Nonlinear AutoRegressive eXogenous input models, volume 14. International Journal
of Advanced Robotic Systems, 2017.

[30] J. V. Ringwood, J. Davidson, and S. Giorgi. Identifying Models Using Recorded Data.
Numerical Modelling of Wave Energy Converters, 2016.

[31] MATLAB. What are Hammerstein-Wiener models? Mathsworks.Inc, 2021.

[32] J.L.Figueroa, S.I.Biagiola, and O.E.Agamennoni. An approach for identification of
uncertain Wiener systems, volume 48. Mathematical and Computer Modelling, 2008.

[33] J. W. Wingerden, and M. Verhaegen. Closed-loop subspace identification of
hammerstein-wiener models. In 48th IEEE conference on decision and control and
28th Chinese control conference - Shanghai, China, pages 3637–3642, 2009.

[34] L. Ljung, C. Andersson, K. Tiels, and T. B. Schön. Deep Learning and System
Identification, volume 53. IFAC-PapersOnLine, 2020.

[35] Q. Liu, W. Chen, H. Hu, and Q. Zhu. An Optimal NARX Neural Network Iden-
tification Model for a Magnetorheological Damper With Force-Distortion Behavior,
volume 7. Frontiers in Materials, 2020.

[36] R. W.K. Chan, J. Yuen, E. Lee, and M. Arashpour. Application of Nonlinear-
Autoregressive-Exogenous model to predict the hysteretic behaviour of passive control
systems, volume 85. Engineering Structures, 2015.

[37] C. Andersson, A. H. Ribeiro, K. Tiels, N. Wahlstrom, and T. B.Schon. Deep Convo-
lutional Networks in System Identification, volume 2019-December. Proceedings of
the IEEE Conference on Decision and Control, 2019.

[38] J. M. Nóbrega and H. Jasak. OpenFOAM: Selected Papers of the 11th Workshop,
volume 11. Springer International Publishing, 2019.

[39] J. Ferziger and M. Peric. Computational methods for fluid dynamics. 3rd edn.
Springer, Berlin, 2002.

[40] C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) method for the dynamics of
free boundaries, volume 39. Journal of Computational Physics, 1981.

[41] A. M. Miquel, A. Kamath, M. A.Chella, R. Archetti, and H. Bihs. Analysis of
Different Methods for Wave Generation and Absorption in a CFD-Based Numerical
Wave Tank, volume 6. Journal of Marine Science and Engineering, 2018.

[42] B. Bouali and S. Larbi. Contribution to the Geometry Optimization of an Oscillating
Water Column Wave Energy Converter, volume 36. Energy Procedia, 2013.

63

[43] Du. Qingjie, Y. C. Dennis, and Leung. ‘2d numerical simulation of ocean waves. In
World Renewable Energy Congress, Sweden, 2011.

[44] G. Chawla, J.T. Kirby, and A. Sinha. Generation of waves in Boussinesq models
using a source function method, volume 36. Coastal Engineering, 1999.

[45] A. Chawla and J.T. Kirby. A source function method for generation of waves on
currents in Boussinesq models, volume 22. Applied Ocean Research, 2000.

[46] J. Orszaghova, A.G.L. Borthwick, and P.H. Taylor. From the paddle to the beach -
A Boussinesq shallow water numerical wave tank based on Madsen and Sørensen’s
equations, volume 2. Journal of Computational Physics, 2012.

[47] C.M. Dong and C. J. Huang. Generation and propagation of water waves in a two-
dimensional numerical viscous wave flume, volume 3. Journal of Waterway, Port,
Coastal and Ocean Engineering, 2004.

[48] P. Schmitt, C. Windt, J. Davidson, J. V. Ringwood, and T. Whittaker. Beyond
VoF: alternative OpenFOAM solvers for numerical wave tanks, volume 6. Journal of
Ocean Engineering and Marine Energy volume, 2020.

[49] P. Schmitt and B. Elsaesser. A review of wave makers for 3d numerical simulations.
In Proceedings of the 6th International Conference on Computational Methods in
Marine Engineering, Rome, Italy, volume 56, page 437–446, 2015.

[50] R. Tipireddy, P. Perdikaris, P. Stinis, and A. Tartakovsky. A comparative study of
physics-informed neural network models for learning unknown dynamics and consti-
tutive relations. arXiv:1904.04058, 2019.

64

A Additional Model Performance Data Tables

A.1 ARX performance vs model orders for Inverse MSD prob-
lem

Performance
ARX Training Dataset Testing Datasets
[ny nu nd] Loss Function Fit (%) Testing Fit

I(%)
Testing Fit
II (%)

[1 7 2] 5.544× 10−1 52.12 −75.07 69.87
[0 12 3] 2.514× 10−1 66.72 −154.35 53.38
[0 7 0] 8.089× 10−4 98.11 89.52 99.35
[3 11 0] 2.643× 10−4 98.80 95.65 99.21
[0 8 0] 3.013× 10−4 98.85 95.27 99.14
[0 15 0] 9.047× 10−5 99.36 87.22 98.47
[2 1 1] 19.05× 10−1 2.058 −0.09 −0.28
[3 4 1] 4.182× 10−1 27.58 −43.19 22.18
[3 4 0] 2.248× 10−1 95.01 85.84 93.53
[1 3 0] 4.691× 10−1 59.84 26.19 40.11
[3 9 0] 1.400× 10−3 98.19 90.99 99.05
[1 9 0] 2.966× 10−4 98.88 95.00 99.10
[0 9 0] 2.617× 10−4 98.93 93.17 93.17
[0 70 0] 5.395× 10−9 99.99 14.99 99.98
[1 70 0] 5.517× 10−9 99.99 14.04 99.98
[1 11 0] 1.920× 10−4 99.08 93.65 98.86
[0 11 0] 1.908× 10−4 99.08 93.47 98.82

Table A.1: Goodness of fit values for various ARX Model orders for Inverse MSD
problem

65

A.2 ARX performance vs model orders for Direct NWT prob-
lem

Performance
ARX Training Dataset Testing Datasets
[ny nu nd] Loss Function Fit (%) Dataset I

Fit (%)
Dataset II
Fit (%)

Dataset III
Fit (%)

[1 7 2] 2.518× 10−5 28.58 −0.70 21.23 1.5
[1 3 0] 5.228× 10−5 1.48 −1.35 1.37 0.64
[2 103 94] 1.057× 10−7 86.83 83.50 91.27 70.05
[2 150 94] 4.798× 10−6 87.65 22.03 74.04 69.10
[3 5 4] 4.497× 10−5 0.25 −0.28 0.15 −0.76
[3 12 17] 4.433× 10−5 0.14 −1.36 −1.19 −0.90
[3 103 94] 2.545× 10−7 87.66 81.20 90.69 68.44
[3 103 96] 2.531× 10−7 87.71 81.10 90.42 68.96
[3 96 96] 3.364× 10−7 87.42 79.33 89.30 68.22
[3 97 100] 3.679× 10−7 87.36 80.46 89.56 68.07
[3 129 96] 1.377× 10−7 87.56 80.61 89.52 69.72
[4 103 94] 1.377× 10−7 87.56 80.61 89.52 67.64
[5 23 39] 5.456× 10−7 21.00 −5.87 7.88 −22.49
[6 95 80] 3.796× 10−8 85.19 76.09 87.71 64.97
[9 107 100] 3.810× 10−9 87.71 76.38 88.76 68.93
[11 17 29] 6.825× 10−5 25.66 17.49 23.75 −7.90
[15 103 96] 3.176× 10−9 87.68 81.20 90.62 68.86

Table A.2: Performance of ARX with different model order configurations for NWT
direct problem

66

A.3 NARX performance comparison for Direct NWT problem

Performance
NARX Training Dataset Testing Datasets
idTreePartition Loss Function Fit (%) Dataset I

Fit (%)
Dataset II
Fit (%)

Dataset III
Fit (%)

1 unit 3.318× 10−8 87.02 83.93 91.21 54.23
2 units 3.396× 10−8 87.02 83.93 91.62 54.23
3 units 2.377× 10−8 78.98 75.20 81.57 54.22
6 units 2.367× 10−8 78.99 75.21 81.57 54.22

Table A.3: Effect of changing number of units of nonlinear idTreePartition function on
the performance of the best performing ARX model order [2 103 94] for direct NWT
problem

A.4 HW model performance for Direct NWT problem

Performance
HW Training Dataset Testing Datasets
[nb nf nk] Loss Function Fit(%) Dataset I

Fit (%)
Dataset II
Fit (%

Dataset III
Fit(%))

[5 23 39] 1.166× 10−5 53.49 5.95 61.73 0.17
[9 5 0] 4.875× 10−5 4.92 −274.31 −34.01 13.44
[11 21 67] 4.170× 10−6 72.19 46.60 60.49 15.88
[11 17 29] 1.479× 10−5 47.62 34.82 55.04 7.29
[14 43 54] 1.509× 10−5 47.08 36.80 53.76 16.74
[54 32 22] 1.006× 10−5 56.80 9.5401 57.23 15.55
[76 13 98] 9.995× 10−7 86.38 75.17 87.56 70.74
[102 2 96] 8.477× 10−7 87.46 18.14 86.68 71.08
[103 3 94] 1.059× 10−6 87.17 77.86 89.32 70.90
[103 3 96] 8.869× 10−7 92.73 81.41 90.69 71.08

Table A.4: Comparison of goodness of fit values for various Hammerstein Wiener model
orders for Direct NWT problem

67

A.5 ARX performance vs model orders for Inverse NWT prob-
lem

Performance
ARX Training Dataset Testing Datasets
[ny nu nd] Loss Function Fit (%) Testing

A Fit(%)
Testing
B Fit(%)

Testing
C Fit(%)

Testing
D Fit(%)

[2 23 0] 1.186× 10−3 38.24 30.37 42.55 8.62 −44.17
[6 103 0] 3.091× 10−5 74.27 81.02 77.16 82.68 68.36
[7 90 0] 3.091× 10−5 90.67 92.32 79.34 89.30 68.36
[7 91 0] 2.663× 10−5 91.74 92.36 83.18 89.67 70.86
[7 92 0] 3.117× 10−5 91.40 92.32 83.19 89.58 72.31
[7 93 0] 2.159× 10−5 92.85 92.25 84.18 90.04 72.72
[7 94 0] 2.323× 10−5 92.63 90.18 82.38 89.83 75.82
[7 95 0] 2.518× 10−5 92.48 90.10 82.27 89.83 75.95
[7 100 0] 7.391× 10−6 91.46 79.34 78.15 85.63 71.72
[7 107 0] 5.604× 10−5 91.33 79.34 77.67 84.96 49.58
[7 114 0] 6.871× 10−6 90.55 79.34 72.24 83.04 65.74
[7 120 0] 5.522× 10−5 79.27 88.39 76.30 85.46 64.86
[7 128 0] 6.144× 10−5 91.33 79.34 77.67 84.96 49.58
[7 130 0] 6.218× 10−5 79.19 85.55 76.05 80.15 58.04
[7 200 0] 3.124× 10−5 92.48 79.34 77.92 80.76 54.78
[8 93 0] 2.948× 10−5 72.69 81.94 70.46 78.80 68.81
[9 93 0] 3.862× 10−5 65.89 73.82 61.15 71.72 67.53
[10 93 0] 2.259× 10−5 87.33 77.77 74.17 81.19 67.84
[11 93 0] 2.051× 10−5 82.44 78.07 75.90 73.77 63.81
[15 93 0] 1.0× 104 −0.72 0.002 −1.46 −0.56 −1.02
[20 93 0] 1.042× 10−4 81.39 83.14 78.54 75.91 56.91
[25 93 0] 1.544× 10−3 81.79 74.94 79.27 64.31 46.97

Table A.5: Comparison of goodness of fit values for various ARX model orders for
Inverse NWT problem

68

A.6 OE and HWmodel performances for Inverse NWT problem

Performance
OE Training Dataset Testing Datasets
[nb nf nd] Loss Function Fit (%) Testing

A Fit(%)
Testing
B Fit(%)

Testing
C Fit(%)

Testing
D Fit(%)

[67 3 0] 9.054× 10−5 87.69 87.14 76.66 75.82 37.41
[74 3 0] 8.362× 10−5 88.38 83.75 76.84 78.31 30.81
[75 3 0] 1.113× 10−4 87.18 80.42 75.61 77.55 16.93
[91 3 0] 7.214× 10−5 89.52 89.74 79.59 86.53 60.44
[96 3 0] 4.696× 10−5 89.97 89.81 80.03 86.46 65.85
[98 3 0] 7.841× 10−5 88.32 84.88 77.39 82.62 33.48
[99 3 0] 4.985× 10−5 90.19 89.05 80.16 84.12 55.31
[102 3 0] 1.527× 10−4 86.54 76.91 72.08 73.79 −6.47

Table A.6: Comparison of goodness of fit values for various Output Error model orders
for Inverse NWT problem

Performance
HW Training Dataset Testing Datasets
[nb nf nd] Loss Function Fit (%) Testing

A Fit(%)
Testing
B Fit(%)

Testing
C Fit(%)

Testing
D Fit(%)

[62 6 0] 2.421× 10−4 80.88 87.90 77.62 81.19 57.67
[75 6 0] 2.389× 10−4 87.96 88.08 76.67 82.66 56.65
[76 6 0] 2.309× 10−4 88.17 88.46 78.20 82.30 59.04
[82 6 0] 2.389× 10−4 88.42 87.95 76.52 81.60 57.71
[89 6 0] 2.381× 10−4 88.46 88.02 76.07 81.17 52.47
[92 6 0] 2.448× 10−4 88.36 88.63 78.15 82.54 59.24
[95 6 0] 2.443× 10−4 87.93 88.75 78.20 81.32 49.57
[99 6 0] 2.266× 10−4 84.07 88.03 75.00 80.68 42.25
[106 6 0] 2.197× 10−4 88.54 88.14 74.65 82.90 62.50
[107 7 0] 2.468× 10−4 88.91 88.56 79.80 82.62 60.59
[108 7 0] 2.261× 10−4 88.55 89.11 79.24 83.85 69.84
[141 6 0] 2.215× 10−4 86.73 90.32 80.01 87.03 72.84
[147 7 0] 2.193× 10−4 84.67 90.89 80.08 86.39 71.69

Table A.7: Comparison of goodness of fit values for various Hammerstein Wiener model
orders for Inverse NWT problem

69

A.7 NARXNeural Network performance for Inverse NWT prob-
lem

Performance
NARX
NN

Feedforwardnet Testing Datasets

[ny nu nd] Neurons
per layer

Activation
func. used

Training
Fit(%)

Testing
B Fit(%)

Testing
C Fit(%)

Testing
D Fit(%)

[2 98 0] [12 8] [linear linear] 73.09 40.24 66.59 64.61
[2 103 0] [12 8] [linear linear] 71.02 48.05 69.48 65.6
[2 103 0] [2 2] [linear linear] 71.33 37.89 66.78 50.32
[2 103 0] [2 4] [linear linear] 65.77 36.77 64.73 62.08
[2 103 0] [3 2] [linear linear] 69.18 51.42 64.52 75.79
[2 103 0] [3 4] [linear linear] 72.97 23.85 67.32 22.60
[2 103 0] [12 2] [linear linear] 69.41 45.19 66.03 65.57
[2 98 0] [12 3] [linear linear] 73.19 44.51 62.67 69.08
[2 98 0] [12 4] [linear linear] 74.48 16.62 37.44 36.36
[2 98 0] [12 8] [linear linear] 73.09 40.24 64.60 66.59
[3 96 0] [12 4] [linear linear] 66.40 41.93 42.88 51.58
[2 93 0] [12 2] [tansig tansig] 79.88 31.04 43.81 35.47
[3 98 0] [2 2] [tansig tansig] 52.33 31.21 2.67 73.84
[3 98 0] [3 2] [tansig tansig] 53.55 46.24 16.06 61.53
[3 98 0] [3 3] [tansig tansig] 50.01 51.96 30.27 18.86
[3 96 0] [12 2] [tansig tansig] 57.29 31.38 32.41 39.88

Table A.8: Comparison of goodness of fit values for various NARX Neural Network for
Inverse NWT problem

70

B MATLAB And Python Codes

B.1 NARX Neural Network Code

##
########### NARX−Neural Network f o r Spring Mass Damper System ##########
##
import numpy as np
import pandas as pd
import t en so r f l ow as t f
from ten so r f l ow . keras . models import Sequent i a l
from ten so r f l ow . keras . l a y e r s import Dense , Dropout
from ten so r f l ow . keras . op t im i z e r s import RMSprop
from sk l e a rn . met r i c s import , mean_absolute_error , r2_score
from matp lo t l i b import pyplot as p l t
p l t . rcParams . update ({ ’ f ont . s i z e ’ : 18})
##
Function to determine goodness o f f i t
##
def f i t (t a rge t s , p r e d i c t i o n s) :

from numpy import l i n a l g as LA
ta r g e t s=t a r g e t s . reshape (t a r g e t s . shape [0] , 1)
p r e d i c t i o n s = p r ed i c t i o n s . reshape (p r e d i c t i o n s . shape [0] , 1)
re turn (1−LA. norm(t a r g e t s − p r e d i c t i o n s)/LA. norm

. . . . (t a rge t s−t a r g e t s .mean ()))∗100
##
Function to s imulate and p lo t the r e s u l t s
##
def s imulate (X_test , Y_test) :

predict_time=Y_test . shape [0]
Y_pred ic ted_of f l ine=np . z e r o s (shape=(predict_time , 1))
X_pred ic t_of f l ine = X_test [0] . reshape (1 , pastoutput+past input) ;
Y_pred ic ted_of f l ine [0] = Y_test [0]
y_predict_tmp = Y_pred ic ted_of f l ine [0]
Y_past =X_test [0 , past input : past input+pastoutput] . reshape (1 , pastoutput)
f o r i in range (0 , predict_time −1):

Y_past [: , 0 : pastoutput −1]=Y_past [: , 1 :] #Ro l l i ng window by 1
Y_past [: , −1]= y_predict_tmp
X_pred ic t_of f l ine [: , 0 : pas t input]=X_test [i +1 ,0: past input]
X_pred ic t_of f l ine [: , past input : past input+pastoutput]=Y_past
y_predict_tmp= model . p r ed i c t (X_pred ic t_of f l ine)
Y_pred ic ted_of f l ine [i +1]=y_predict_tmp

71

Y_test = Y_test . reshape (Y_test . shape [0] , 1)
import matp lo t l i b . pyplot as p l t
import math
Fit = f i t (Y_test [: predict_time] , Y_pred ic ted_of f l ine [: predict_time])
i f F i t == −math . i n f :

r e turn p r i n t ("Bad Fit −I n f ")
e l s e :

p l t . p l o t (Y_test [: predict_time] , l a b e l =’Real output ’)
p l t . p l o t (Y_pred ic ted_of f l ine [: predict_time] , l a b e l =’NARX_NN’)
p l t . x l ab e l (’ D i s c r e t e time steps ’)
p l t . y l ab e l (’ Force ’)
p l t . t i t l e (" F i t : " +s t r (f ’ { Fi t : . 2 f } ’)+"%")
p l t . l egend ()
p l t . g r i d ()

re turn p l t . show ()
##
Function to Plot the g iven data
##
def p l o t s (t , x , y) :

p l t . f i g u r e (f i g s i z e =(14 ,6))
p l t . subp lot (2 , 1 , 1)
p l t . p l o t (t , x , l a b e l=r ’ $Input Force$ ’)
p l t . l egend () ; p l t . g r i d ()
p l t . y l ab e l (’ Exc i tat ion ’)
p l t . subp lot (2 , 1 , 2)
p l t . p l o t (t , y , l a b e l=r ’ $Displacement$ ’)
p l t . l egend ()
p l t . y l ab e l (’ Displacement ’)
p l t . x l ab e l (’Time ’)
p l t . g r i d ()
re turn p l t . show ()

##
Load the Data
##
data = pd . read_csv (’ https : // raw . g i thubuse rcontent . com/Mir i r f an11 /

System− i d e n t i f i c a t i o n /main/MSD. csv ’)
Time = data [’ Time ’] . va lue s
########################### Training ##############################
Input1 = data [’ Input1 ’] . va lue s # Exc i ta t i on
output1 = data [’ output1 ’] . va lue s # Displacement
p l o t s (Time , Input1 , output1)
########################### Val idat i on ############################

72

Input4 = data [’ Input4 ’] . va lue s # Exc i ta t i on
output4 = data [’ output4 ’] . va lue s # Displacement
p l o t s (Time , Input4 , output4)
########################### Test ing ###############################
Input3 = data [’ Input3 ’] . va lue s # Exc i ta t i on
output3 = data [’ output3 ’] . va lue s # Displacement
p l o t s (Time , Input3 , output3)

" " " System I d e n t i f i c a t i o n " " "

##
This func t i on formats the input and output data
##
def form_data (input_seq , output_seq , pastoutput , past input) :

data_len=np .max(input_seq . shape)
X=np . z e r o s (shape=(data_len−past input , past input+pastoutput))
Y=np . z e r o s (shape=(data_len−past input ,))
f o r i in range (0 , data_len−(past input)) :

X[i , 0 : past input]= input_seq [i : i+past input , 0]
X[i , past input :]= output_seq [i : i+pastoutput , 0]
Y[i]=output_seq [i+pastoutput , 0]

r e turn X,Y
#################### Direc t Problem ###############################
past input=4; pastoutput=3;
###
Create the t r a i n i n g data
###
input_seq_train = Input1 . reshape (Input1 . shape [0] , 1)
output_seq_train = output1 . reshape (output1 . shape [0] , 1)
X_train , Y_train = form_data (input_seq_train , output_seq_train ,

pastoutput , past input)
##
Create the va l i d a t i o n data
##
input_seq_val idate = Input4 . reshape (Input4 . shape [0] , 1)
output_seq_val idate = output4 . reshape (output4 . shape [0] , 1)
X_validate , Y_validate = form_data (input_seq_val idate ,

output_seq_validate , pastoutput , past input)
###
Create the t e s t data
###
input_seq_test = Input1 . reshape (Input1 . shape [0] , 1)

73

output_seq_test = output1 . reshape (output1 . shape [0] , 1)
X_test , Y_test = form_data (input_seq_test , output_seq_test ,

pastoutput , past input)
##
Create the MLP network and t r a i n i t
##
model = Sequent i a l ()
model . add (Dense (12 , a c t i v a t i o n=’ l i n e a r ’ , use_bias=False ,

input_dim=(past input+pastoutput)))
model . add (Dense (8 , a c t i v a t i o n=’ l i n e a r ’))
model . add (Dense (1))
opt = t f . ke ras . op t im i z e r s .Adam(l r =0.001 , decay=1e−6)
model . compi le (opt imize r=opt , l o s s =’mse ’)
h i s t o r y=model . f i t (X_train , Y_train , epochs=500 , batch_size=20,

va l idat ion_data=(X_validate , Y_validate) , verbose=2)
##
Plot t r a i n i n g and va l i d a t i o n curves
##
l o s s=h i s t o r y . h i s t o r y [’ l o s s ’]
va l_ lo s s=h i s t o r y . h i s t o r y [’ va l_loss ’]
epochs=range (1 , l en (l o s s)+1)
p l t . f i g u r e ()
p l t . p l o t (epochs , l o s s , ’ b ’ , l a b e l =’Train ing l o s s ’)
p l t . p l o t (epochs , va l_loss , ’ r ’ , l a b e l =’Va l idat i on l o s s ’)
p l t . t i t l e (’ Train ing and va l i d a t i o n l o s s e s ’)
p l t . x l ab e l (’ Epochs ’)
p l t . y l ab e l (’ Loss ’)
p l t . x s c a l e (’ log ’)
p l t . g r i d () ; p l t . l egend () ;
p l t . show ()
##
use the t e s t data to i n v e s t i g a t e the p r ed i c t i o n performance
##
network_predict ion = model . p r ed i c t (X_test)
Y_test = np . reshape (Y_test , (Y_test . shape [0] , 1))
p l t . f i g u r e (f i g s i z e =(14 ,5))
p l t . p l o t (Y_test , ’ r ’ , l a b e l =’System ’)
p l t . p l o t (network_predict ion , ’ b ’ , l a b e l =’1 s tep ahead Pred ic t ion ’)
p l t . x l ab e l (’ D i s c r e t e time steps ’)
p l t . y l ab e l (’ Output ’) ; p l t . l egend () ; p l t . g r i d () ; p l t . show ()
#################### Plot the Simulat ion ##########################
simulate (X_test , Y_test)

74

B.2 ARX Code for Mass-Spring-Damper System

t_ f i n a l =100;
dt =0.1 ;
time=0:dt : t_ f i na l ; %time vec to r
%−−−−−−−−−−−−−−−−−−−−−−−Input−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
type =1; % Choose 1 f o r s i n g l e f requency and 2 f o r mu l t ip l e f requency
trainingAmp=5;
t ra in ingFreq =9;
validationAmp=2;
va l i da t i onFreq =11;
i f type ==1

Input = trainingAmp∗ s i n (t ra in ingFreq ∗ time) ;
e l s e

f r e q s =1:10; % Mul i tp l e f r e qu en c i e s
Input = time ∗0 ; % I n i t i a l input s i g n a l to 0
%Add mul t ip l e f requency components to input s i g n a l
f o r i =1: l ength (f r e q s)

% Give random amplitude and phase to each f requency component
Input=Input+rand ()∗ s i n (f r e q s (i)∗ time+rand ()∗2∗ pi) ;

end
end

%−−−−−−−−−−−−−−−− Model f o r mass−spr ing−damper system−−−−−−−−−−−−−−%
m=1;
c=1;
k=1;
%−−−−−−−−−−−−−−−−−−−−− Simulate the system−−−−−−−−−−−−−−−−−−−−−−−−−%
x0=[0 0] ; % i n i t i a l c ond i t i on s
opt ion=odeset (’ RelTol ’ , 1e−8, ’AbsTol ’ , 1e−8);
[t , x]=ode45 (@(t , x) MSD_system(m, c , k , Input , time , t , x) , [0 t_ f i na l] , x0 , opt ion) ;

%−−−−−−−−−−−−−−−−−−−− d i f f e r e n t i a l equat ions −−−−−−−−−−−−−−−−−−−−−%

%−−−−−I n t e r p o l a t e the output to the same time sampling as the input−−%
Output=in t e rp1 (t , x , time) ;
p o s i t i o n=Output (: , 1) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−ARX model−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
na = 2 ; % Number o f past outputs
nb = 7 ; % Number o f inputs (cur rent+past)

75

nd = 0 ; % Number o f f u tu r e inputs
np = na+nb+nd ; % Total number o f parameters in ARX model

%−−−−−−−−−−−−−−−−−−−− Parameter i d e n t i f i c a t i o n −−−−−−−−−−−−−−−−−−−−−−%
trans i en t_sec =10; % Number o f seconds to d i s r e ga rd from the s t a r t
%o f the data
t r an s i e n t=c e i l (t r ans i en t_sec /dt) ; % Number o f data po in t s to d i s r e ga rd
%from the s t a r t o f the data
dataLength=length (po s i t i o n)− t r a n s i e n t ;
z = po s i t i o n (t r an s i e n t : end −1 ,1) ; % obse rvat i on vec to r / po s i t i o n

%−−−−−−−−−−−−−−−−−−−−−output from the s imu la t i on −−−−−−−−−−−−−−−−−−−−%
phi = ze ro s (dataLength , np) ; % Data matrix
%Load past output va lue s in to the Data matrix
f o r i =1:na

% Load na columns in to the matrix , each one time s h i f t e d one step
phi (: , i)=po s i t i o n (t r an s i en t−i : end−1− i) ;

end
%Load past input va lue s in to the Data matrix
f o r i =1:nb

%Load nb columns in to the matrix ,
phi (: , na+i)=Input (t r an s i en t−i +1:end−i) ;

end
%−−−−−−−−−−−−− Least squares parameter i d e n t i f i c a t i o n −−−−−−−−−−−−−−−%
theta = inv (phi ’∗ phi)∗ phi ’∗ z
%−−−−−−−−−−−−−−− Simulate system us ing ARX model−−−−−−−−−−−−−−−−−−−−−%
z_hat=po s i t i o n (1 :max(na , nb)+2); %I n i t i a l i s e f i r s t few po in t s from data

%−−−−−−−−−−−−Implement ARX model p r ed i c t i n g one step −−−−−−−−−−−−−−−−%
%−−−−−−−−−−− ahead and then i t e r a t i n g to nexttime step −−−−−−−−−−−−−−%
fo r i = max ([na , nb])+1 : l ength (Input)

z_hat (i)= f l i p (z_hat (i−na : i −1)) ’∗ theta (1 : na)+

f l i p (Input (i−nb+1: i))∗ theta (na+1:end) ;
end
%−−−−−−−−−−−−− Calcu la te e r r o r metr ic f o r the f i t −−−−−−−−−−−−−−−−−−−−%
er r o r = pos i t i on−z_hat ;
e r rorSquared=0;
f o r i =1: l ength (e r r o r)

er rorSquared=errorSquared+e r r o r (i)^2 ;
end
RMS = sq r t (er rorSquared / length (e r r o r)) ; %Root mean sqaured value

76

t r a i n i n gF i t = RMS/max(abs (p o s i t i o n)) %Normalised RMS, aga in s t the
% amplitude o f the s i g n a l

%−−−−−−−−−−−−−−−−−−−−−− Plot r e s u l t s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
f i gu r e , p l o t (time , po s i t i on , ’ r ’ , time , z_hat , ’ b ’) , x l ab e l (’ Time (s) ’) ,
y l ab e l (’ Po s i t i on (m) ’) , l egend (’ System ’ , ’ARX model ’) ,
t i t l e (s t r c a t (’ Train ing data : F i t = ’ , num2str (t r a i n i n gF i t)))

%−−−−−−−−−−−−−−−−−− Val idate on new data −−−−−−−−−−−−−−−−−−−−−−−−−−−−%
i f type == 1

Input = validationAmp∗ s i n (va l i da t i onFreq ∗ time) ;
e l s e

f r e q s = 1 : 1 0 ; %Mul i tp le f r e qu en c i e s
Input = time ∗0 ; %I n i t i a l input s i g n a l to 0
%Add mul t ip l e f requency components to input s i g n a l
f o r i =1: l ength (f r e q s)
%%% Give random amplitude and phase to each f requency component

Input=Input+rand ()∗ s i n (f r e q s (i)∗ time+rand ()∗2∗ pi) ;
end

end
%−−−−−−−−−−−−−−−−−−− Simulate the system −−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
x0=[0 0] ; % i n i t i a l c ond i t i on s
opt ion = odeset (’ RelTol ’ , 1e−8, ’AbsTol ’ , 1e−8);
[t , x]=ode45 (@(t , x) MSD_system(m, c , k , Input , time , t , x) , [0 t_ f i na l] , x0 , opt ion) ;
Output = in t e rp1 (t , x , time) ;
p o s i t i o n = Output (: , 1) ;
%−−−−−−−−−−− Simulate system us ing ARX model−−−−−−−−−−−−−−−−−−−−−−−−%
z_hat = po s i t i o n (1 :max(na , nb)+2); % I n i t i a l i s e f i r s t few po in t s from data

f o r i = max ([na , nb])+1 : l ength (Input)
z_hat (i)= f l i p (z_hat (i−na : i −1)) ’∗ theta (1 : na)+

f l i p (Input (i−nb+1: i))∗ theta (na+1:end) ;
end
%−−−−−−−−−−−− Calcu la te e r r o r metr ic f o r the f i t −−−−−−−−−−−−−−−−−−−−−−%
er r o r = pos i t i on−z_hat ;
e r rorSquared=0;
f o r i = 1 : l ength (e r r o r)

er rorSquared=errorSquared+e r r o r (i)^2 ;
end
RMS = sq r t (er rorSquared / length (e r r o r)) ;
v a l i d a t i o nF i t = RMS/max(abs (p o s i t i o n))

77

%−−−−−−−−−−−−−−−−−Plot r e s u l t s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
f i gu r e , p l o t (time , po s i t i on , ’ r ’ , time , z_hat , ’ b ’) , x l ab e l (’ Time (s) ’) ,
y l ab e l (’ Po s i t i on (m) ’) , l egend (’ System ’ , ’ARX model ’) ,
t i t l e (s t r c a t (’ Va l ida t i on data : F i t = ’ , num2str (v a l i d a t i o nF i t)))

%−−−−−−−−− Function to c a l c u l a t e the mass sp r ing damper system −−−−−%
func t i on [x_dot]=MSD_system(m, c , k , Input , time , t , x)

input=in t e rp1 (time , Input , t) ;
x_dot (1 ,1)=x (2) ;
x_dot (2 ,1)= (input − c∗x (2) − k∗x (1)) /m;

end

78

	Abstract
	Notations
	List of figures
	List of tables
	Introduction
	Objectives

	Theory and Methods
	System Identification
	Modelling approaches in system identification
	A brief overview of optimization techniques
	Linear Regression and Least Squares
	Regularization
	Gradient Based Algorithm
	Nonlinear Least Square Problem
	Lebenberg-Marquardt

	Discerete time Models Structures
	Autoregressive with Exogenous Input (ARX)
	Nonlinear Autoregressive with Exogenous Inputs (NARX)
	Structure of NARX Models
	Different Mapping Functions for NARX Models
	Output Error (OE) Model
	Hammerstein-Wiener Model (HW)

	Deep Learning Model Structures
	NARX Neural Network

	Model performance evaluation metric
	Model Validation
	Akaike information criterion (AIC)
	Introduction to OpenFOAM
	Governing Equations
	Volume of Fluid (VOF)

	Introduction to Numerical Wavetanks
	Geometry of Wave Tank
	Background Mesh
	Simulation

	Numerical Study of Mass Spring Damper System
	Direct MSD Problem
	Autoregressive with Exogenous Input (ARX)
	NARX Neural Network

	Inverse MSD Problem

	Numerical Study of Wave Tank
	Data generation and pre-processing
	Direct Numerical Wavetank (NWT) problem
	Autoregressive with External Inputs (ARX)
	Output Error (OE) Model
	Hammerstein-Wiener (HW) Model
	Nonlinear Autoregressive with exogeneous variables

	Nonlinear Inverse Numerical Wave Tank Problem
	Autoregressive with External Inputs (ARX)
	Output Error (OE) Model
	Hammerstein-Wiener (HW) Model

	General Conclusions and Perspective
	Reference
	Appendices
	Additional Model Performance Data Tables
	ARX performance vs model orders for Inverse MSD problem
	ARX performance vs model orders for Direct NWT problem
	NARX performance comparison for Direct NWT problem
	HW model performance for Direct NWT problem
	ARX performance vs model orders for Inverse NWT problem
	OE and HW model performances for Inverse NWT problem
	NARX Neural Network performance for Inverse NWT problem

	MATLAB And Python Codes
	NARX Neural Network Code
	ARX Code for Mass-Spring-Damper System

